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ABSTRACT
Coffee production plays an essential role in the Brazilian economy, and a large production centre is located in Minas Gerais. In recent years, there has 
been an increase in coffee cultivation, consequently generating coffee wastewater (CW) and solid waste (Exocarp, outer mesocarp, parchment, and dregs) 
during the processing stage. Thus, the present review study seeks to characterize these by-products from the coffee production chain and present their 
possible applications in agribusiness and other sectors towards a circular economy, mainly related to reuse as fertilizer or energy and biomaterial recovery. 
An extensive literature review was collected in major scientific databases using keywords related to the valorization and application of coffee industry 
waste. CW treatment is complex given the high concentrations of organic matter, phenols, and nutrients, especially potassium. Still, its use as a liquid 
fertilizer is highly recommended as it can increase crop yield. In this regard, CW should be applied to soil according to nutritional criteria, with potassium 
as the reference chemical element. The wastewater production and its potential for soil contamination can be reduced by applying biological, physical, or 
chemical treatment along with recirculation routes during the washing/peeling/pulping of coffee berries. Moreover, the solid waste from coffee produc-
tion can be used for energy generation, wastewater treatment (as an organic filter material or biochar), and as organic fertilizer (in natura or composted). 

Key words: Coffee wastewater; fertigation; nutrients; recirculation; agro-industrial solid waste.

1 INTRODUCTION

Agriculture is of great importance to the Brazilian 
economy, representing up to 29% of the country’s gross 
domestic product (GDP) in 2021 when considering the 
production, processing, and distribution of agricultural 
products (United States Department of Agriculture - USDA, 
2022). Among the primary agricultural activities, coffee 
production is the third largest export sector in the country, 
accounting for approximately US$719.88 million (7.29% of 
national agribusiness exports) (Brazilian Confederation of 
Agriculture and Livestock, 2021).

Minas Gerais state has prominent coffee activity, being 
responsible for 21.9 million bags of Arabica coffee and 283.4 
thousand bags of Conilon coffee (out of national production 
totals of 31.4 million and 16.29 million bags, respectively) 
(Companhia Nacional de Abastecimento - CONAB, 2021), 
with fundamental contributions from the south of the state in 
terms of both quantity and quality.

According to the National Supply Company 
(Companhia Nacional de Abastecimento – CONAB), the 
production of coffee bags in 2022 was estimated to be 16.8% 
higher, with an increase of 18.9% in the south of Minas 
Gerais (CONAB, 2022). However, as production increases, 
there is also an increase in the generation of by-products 
from agricultural activity and product processing (beverage 
production); i.e., the larger the output, the more waste will be 
generated.

Coffee processing occurs in two different ways, wet 
or dry. Brazil processes about 90% of the produced Arabica 
coffee beans via the dry path; the remaining is processed via 
the wet path instead, which generates, besides high-quality 
beverages, a larger amount of solid waste and wastewater 
(International Coffee Organization - ICO, 2022). In the wet 
process, the berries are washed, separated (into floater, green, 
and cherry portions, usually by mechanical density-based 
approaches), peeled, demucilated, and pulped, thus generating 
coffee wastewater (CW). This process also generates solid 
waste, including Exocarps, outer mesocarp, and parchment. 
In addition, the beverage production consists of roasting, 
grounding, and then straining the coffee beans with boiled 
water, which results in coffee dregs (Pereira et al., 2019; Ijanu; 
Kamaruddin; Norashiddin, 2020; Wu et al., 2022). 

According to Matos (2010) and Campos et al. (2021), 
3 to 5 L of CW is produced for each litre of processed berries; 
and three tons of solid waste is generated for each ton of 
processed grains. Due to its physical, chemical, and biological 
properties, the storage and disposal of this waste material can 
cause adverse environmental impacts, e.g., soil acidification 
and salinization, leaching and groundwater contamination, 
eutrophication of water bodies, and greenhouse gas emissions 
(Ijanu; Kamaruddin; Norashiddin, 2020; Campos et al., 2021).

On the other hand, CW and other coffee industry residues 
are rich in organic matter and nutrients, which indicates a 
potential for agricultural use as well as energy and biomaterial 
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recovery (Campos et al., 2021; Hoseini et al., 2021). Given 
this scenario, the present study aimed to review the possible 
applications of some by-products from coffee production and 
processing and present their applications towards a circular 
economy, which corresponds to opportunities to reduce 
environmental liabilities typical of highly productive coffee 
countries, such as Brazil.

2 METHODOLOGY

For preparing this extensive literature review, the 
following keywords were used to search for scientific articles 
in databases such as Web of Science, Scopus, ScienceDirect, 
SpringerLink, Scielo, and Portal de Periódicos da CAPES 
(Brazil): coffee processing, coffee waste, coffee wastewater, 
husk, biochar, fertigation, reuse, Exocarp, coffee pulp, coffee 
skin, silverskin, parchment, coffee dregs, coffee spent, coffee 
by-products, coffee waste valorization, and equivalent terms in 
Portuguese. Moreover, data on coffee production was based on 
collection from agents such as the United States Department 
of Agriculture (USDA), National Supply Company from 
Brazil (CONAB), Brazilian Confederation of Agriculture and 
Livestock (CNA), and International Coffee Organization (ICO).

3 COFFEE WASTEWATER (CW)

3.1 Characteristics and impacts of improper 
disposal

In the process of berry washing (separation), fragments 
of leaves and branches are separated and combined with the 
solid components of the berry that are removed in later stages. 
During peeling and demucilation, part of the pulp (mucilage) 
is removed by water, reducing the risk of fermentation (Ijanu; 
Kamaruddin; Norashiddin, 2020; Campos et al., 2021; 
Das, 2021). In this process (wet method), 4 tons of water is 
required to produce 1 ton of processed grains, generating 1 L 
of wastewater for every 10 to 15 L of berries during washing 
(separation) and 10 L for every 1 L of berries in the peeling and 
demucilation process (Matos; Lo Monaco; Silva, 2001). Thus, 
it appears that there is a high demand for water and that the 
water quality tends drop during berry processing, generating a 
high volume of CW with high pollution potential.

Given this scenario, Matos et al. (2007a) evaluated the 
possibility of reducing water consumption by introducing CW 
reuse in conjunction with the physical and chemical processes 
of solids removal and pH correction. By adding 3.0 g L-1 lime 
to recirculated wastewater used for peeling, the amount of 
water wasted was reduced without damaging the quality of the 
beverage (Matos et al., 2007a). Lime enhances the removal 
of solids in sedimentation tanks, which are used for CW 

treatment before recirculation (Balladares et al., 2018; Prasad 
et al., 2019).

Matos et al. (2007b) evaluated other types of coagulants 
and determined the most appropriate pH ranges for reducing the 
concentration of suspended solids (SS) and the electrical conductivity 
(EC) of the recirculated CW, observing that moringa seed extract 
provided the best results at the natural pH of the wastewater (pH 
= 4.27). When using aluminium sulfate and ferric chloride, it was 
necessary to correct the pH to 7.27 (Matos et al., 2007b). By performing 
recirculation, Soares et al. (2015) reduced water consumption to 0.3 
L of water for each litre of processed coffee berries.

Even if the volume of wastewater produced is reduced, it 
is necessary to establish an appropriate final destination solution 
for CW to avoid negative impacts on the physical environment. 
The potential consequences of improper CW disposal include 
surface sealing (significant presence of solids), soil salinization 
(high EC), death of plants, and contamination of groundwater; 
conversely, the discharge of CW into a watercourse may result 
in reduced concentration of dissolved oxygen (DO) (high 
concentration of organic matter) and changes in water quality 
(Ijanu; Kamaruddin; Norashiddin, 2020; Campos et al., 2021).

Another possible consequence pointed out by some 
authors is the chemical dispersion of clay; however, the 
necessary water conditions associated with a high risk of such 
soil physical disruption require a high sodium adsorption ratio 
(SAR) and low EC, which do not occur with CW (Matos; Matos, 
2017). Table 1 shows the physical, chemical and biochemical 
characteristics of CW and sanitary sewage, illustrating the 
potential of CW to cause adverse environmental impacts if it 
is improperly disposed of.

The characteristics of CW changes according to the 
type of processed berry (Arabica or Conilon), the stages of 
wet processing, the amount of water used and the number 
of recirculation cycles (Prezotti et al., 2012). Moreli et al. 
(2010) observed that the levels of K, N and Ca increased in 
CW with recirculation of the water used in wet processing, 
with accumulation rates of 1.810, 1.030 and 0.183 mg L-1 per 
minute of recirculation, respectively. When the number of 
recirculation cycles increases, the concentrations of nutrients 
and organic matter in the CW increase due to the increases in 
the amounts of mucilage and berry fragments in the water used 
during processing (Moreli et al., 2010). Prezotti et al. (2012) 
surveyed the characteristics of CW from forty properties in 
Espírito Santo, which illustrated great variability, as shown 
in Table 2. The same authors also gathered information from 
these farms, separating the wastewater according to the stage 
in which it was generated (Prezotti et al., 2012) (Table 3).

Table 3 shows lower nutrient concentrations in water 
samples collected from the washing step and higher concentrations 
in samples collected from the peeling and demucilation steps. 
The explanation, according to Prezotti et al. (2012), lies in the 
characteristics of each phase. During washing, the grain Exocarps 
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Table 1: Comparison of the characteristics of sanitary sewage 
and coffee wastewater (CW).

Unit Sanitary sewage CW
TS mg L-1 700 – 1,350 10,600 – 22,000

BOD5 mg L-1 200 – 500 5,800 – 9,700
COD mg L-1 400 – 800 8,000
O & F mg L-1 55 – 170 –
N-total mg L-1 35 – 70 400 – 600
P-total mg L-1 5 – 25 10 – 100

K mg L-1 < 1 – 6 1,200
Na mg L-1 24 – 47 < 10
pH – 6.7 – 7.5 4.0 – 7.0
EC dS m-1 0.5 – 3.6 1.0 – 4.9

TS – total solids; BOD5 – biochemical oxygen demand obtained on 
the fifth day of incubation of the sample at 20 °C (standard BOD); 
COD – chemical oxygen demand; O & F – oils and fats; N-total – total 
nitrogen; P-total – total phosphorus; K – potassium; Na – sodium; pH 
– potential of hydrogen; EC – electrical conductivity. Source: Jordão 
and Pessôa (2005), Matos Magalhães and Sarmento (2010) and von 
Sperling (2014).

are not disrupted; therefore, the contribution of ions in the water 
is due to impurities, such as dust and soil, that were adhered to the 
surface of the grains (Prezotti et al., 2012).

Table 2: CW samples collected from disposal lagoons at 40 farms in the Arabica coffee-producing region of Espírito Santo, Brazil.

 Nutrient 
content limits

N P K Ca Mg Cu Zn Mn Fe B
mg L-1

 Maximum 205.0 23.0 875.0 94.0 28.0 40.0 44.0 80.0 28.0 12.0
 Minimum 1.5 1.0 1.5 1.0 1.0 1.0 1.0 1.0 0.3 1.0
 Average 106.0 5.0 225.0 30.0 9.0 2.0 3.0 5.0 31.0 1.0
 Standard 
deviation 63.0 6.0 202.0 22.0 8.0 11.0 12.0 22.0 127.0 4.0

 CV% 60.0 137.0 97.0 73.0 83.0 459.0 444.0 447.0 406.0 366.0
Source: Prezotti et al. (2012).

Rigueira et al. (2010) also characterized the 
wastewater generated in the processing of coffee berries, 
considering each stage separately. The results reinforced 
the conclusions of Prezotti et al. (2012). The wash water 
had an EC of 0.60 dS m-1, and the concentrations of total 
P, total N and total K were 1889, 75, 15 and 77 mg L-1, 
respectively (Rigueira et al., 2010). During peeling, 
pulping and demucilation, the water content was 1.09 dS 
m-1, and the concentrations of total P, total N and total K 
were 6384, 168, 23 and 157 mg L-1, respectively (Rigueira 
et al., 2010).

3.2 Treatment
CW is richer in nutrients and has a higher organic 

load than sewage; therefore, its treatment presents technical 
challenges (Ijanu; Kamaruddin; Norashiddin, 2020). Thus, 
several studies have explored methods of adjusting CW 
quality for release into a watercourse, such as the use of hybrid 
anaerobic reactors (two types of support media) (Silva et 
al., 2010), anaerobic filters (Fia et al., 2011), surface runoff 
treatment ramps (Matos et al., 2005), constructed wetlands 
(Fia et al., 2010a; Rossmann et al., 2012; 2013) and cascade 
aeration systems (Eustáquio Júnior et al., 2014). 

However, due to the presence of phenolic compounds 
that are resistant to biodegradation, aerobic biological systems 
may not be very effective for treating CW (Fia et al., 2007). 
Thus, aerobic reactors can be combined with anaerobic 
systems, which are more effective in removing phenolic 
compounds (Fia et al., 2010b), and/or lime can be added to 
precipitate these compounds (Prasad et al., 2019).

Other researchers have evaluated more complex 
processes, such as Fenton and photo-Fenton processes (Kondo 
et al., 2014), the use of folic acid (Teixeira; Matos; Rossmann, 
2012) and advanced electrochemical oxidation processes 
(Villanueva-Rodríguez et al., 2014), which are expensive and 
may not be viable for installation at most farms. In addition 
to being characterized by difficult degradation, the high 
potassium concentration of CW hinders its treatment. Fia et 
al. (2008) evaluated subsurface horizontal flow constructed 
wetland systems (SSHF-CWSs) with cattail (Typha sp.) 
and alligator weed (Alternanthera philoxeroides Mart.) as 
an alternative to conventional systems, which have low K 
removal capacity. However, the species did not adapt well to 
the high concentrations of nutrients present in the wastewater 
and extracted fewer nutrients (Fia et al., 2008). In another 
study, Fia et al. (2010a) obtained more success using ryegrass 
(Lolium multiflorum) and black oat (Avena strigosa Schreb.) 
grown in SSHF-CWSs that treated CW after passing through 
anaerobic filters. Thus, the pre-treatment conditions and the 
plant species used play an important role in the success of 
treatment.
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3.3 Fertigation and other possible uses
Due to the difficulty of CW treatment and its rich 

nutrient content, fertigation has gained increasing attention as 
an alternative for CW disposal. This technique uses wastewater 
as a liquid fertilizer that is applied in accordance with nutritional 
criteria. The dose is calculated by taking into account the 
concentrations of nutrients in the wastewater and the crop’s 
need for macro- and micronutrients, defined according to the 
concentration of a reference chemical element in the leaf. For 
CW, the dose is calculated based on the potassium concentration 
(Matos; Matos, 2017; Campos et al., 2021).

Lo Monaco et al. (2009) observed improvements 
in the chemical attributes of soil with CW application, with 
increased concentrations of exchangeable potassium and EC, 
indicating a greater richness of cations and anions in the soil 
and, consequently, higher pH. Likewise, Garcia et al. (2008) 
reported increases in potassium content, pH, base saturation, 
effective cation exchange capacity (CEC), and sum of bases 
and reductions in exchangeable aluminium, aluminium 
saturation and potential acidity. Given these conditions, an 
increase in agricultural production may be made possible by 
providing a range of nutrients. For example, Lo Monaco et al. 
(2011) observed adequate leaf contents of potassium, iron and 
zinc upon CW application (equivalent dose of 66.4 g pit-1), 
in addition to nitrogen, phosphorus and manganese at levels 
above what is considered adequate for coffee plants.

Prezotti et al. (2012) correlated the applied CW dose and 
maize yield by using the modified equation Pmaize = 29.378 + 0.847 
CW - 12.849 CW0.5, where Pmaize is the maize biomass (g) and CW 
is the dose of wastewater. This equation indicates that production 
per leaf increases up to a given application amount but that soil 
salinization and phytotoxicity of the crop occur at higher levels, 
thus reducing productivity (Prezotti et al., 2012). At the doses 
and concentrations of CW administered by Ribeiro et al. (2009), 
fertigation contributed to the vegetative growth of coffee plants 
(plant height, branch diameter and nutrient contents) and was equal 
to or better than (depending on the variable analysed) traditional 
irrigation and potassium fertilization. Thus, it is possible to save 
water and inputs by performing fertigation. For example, Marques 
et al. (2017) calculated a cost reduction of US$445.00 ha-1 in 

fertilization and US$6.00 ha-1 in irrigation (58% water savings) for 
elephant grass (Pennisetum purpureum) fertigation with sewage.

Other possible uses for CW have been less discussed 
recently, including the production of bioethanol (Blinová et 
al., 2017) and biogas via anaerobic treatment (Pin et al., 2020). 
For instance, Prado, Campos e Silva (2010) observed the 
production of 0.545 to 0.602 m3 of biogas and 0.382 to 0.421 
m3 of methane for each kg of COD removed in an upflow 
anaerobic sludge blanket (UASB) reactor treating CW.

4 EXOCARP AND PULP

4.1 Characteristics
The coffee berry is composed of the parchment (or 

endocarp, outer coating of the bean), mucilage (removed in 
demucilation), pulp (mucilage + pulp = mesocarp), Exocarp and 
grain (endosperm) (Figure 1) (Durán et al., 2017; Hall; Trevisan; 
Vos, 2022). During peeling, the parchment and Exocarp are 
removed, resulting in a production of approximately 3.0 tons of 
waste per ton of processed berry (Matos; Magalhães; Sarmento, 
2010), thus requiring an appropriate final destination.

Table 3: Average nutrient levels in CW samples collected from 40 processing units at various processing stages of Arabica coffee 
berries.

Processing step
N P K Ca Mg Cu Zn Mn Fe B

mg L-1

Washing 7.5 0.3 14.0 17.6 3.0 0.03 0.01 0.04 0.66 0.00
Peeling 118.2 6.3 218.0 35.2 9.5 4.1 4.6 8.2 49.5 1.4

Demucilation 93.7 7.9 308.0 31.1 12.3 0.1 0.3 0.6 5.9 0.2
Disposal in lagoons 90.4 7.2 280.0 30.1 11.1 0.1 0.2 0.3 6.7 0.2

Source: Prezotti et al. (2012).

Figure 1: Scheme of the coffee berry and its parts. 
Adapted from Durán et al. (2017).



Coffee Science, 18:e182078, 2023

Use of by-products generated in the processing of coffee berries: A review

According to Durán et al. (2017), the pulp represents 39-
49% of the mass of the fresh berry (6-8% of the mucilage); the 
mucilage represents 22-31% of the dried berry; the parchment 
represents approximately 3.8% of the fresh berry; and the 
Exocarp represents 12% of the fresh berry. Tables 4 and 5 
show the characteristics of the pulp and Exocarp, respectively.

Melo (2016), in turn, introduced coffee husk as a structuring 
agent (high carbon/nitrogen (C/N) ratio material) in the 
composting of poultry litter (low C/N ratio), thus generating 
waste with marketable organic compost characteristics.

Brandão et al. (2000) evaluated the use of coffee 
Exocarp in organic filters, which was effective in the removal 
of SS (> 90%) from swine wastewater (SWW). With a calorific 
value of 3,933.0 kcal kg-1, coffee Exocarps have the potential 
to generate energy, for example, in the drying of beans (Vale 
et al., 2007).

Murthy and Naidu (2012), Castillo et al. (2021), and 
Bondam et al. (2022) cite other possible uses of Exocarp 
and pulp in animal and human feed, as pharmaceutical 
ingredients, as vermicompost as a substrate for the 
production of edible fungi, as a source of substances for 
food pigments, in the extraction of phenols, and in the 
production of ethanol and biosorbents. Munirwan et al. 
(2022) discuss the potential of applying coffee husk ash as 
a soil stabilization agent. On the other hand, Jayachandra, 
Venugopal and Appaiah (2011) used coffee Exocarps pre-
treated with the fungus Mycotypha for biomethanation. 
The biogas produced can be used in an engine to produce 
electrical energy, and all the residual heat can be used to 
dry coffee (Pin et al., 2020; Battista et al., 2021; Mahmoud; 
Atabani; Badruddin, 2022).

Due to the presence of large amounts of caffeine, 
phenols and free tannins (polyphenols), coffee residues can 
be toxic, and their treatment may be challenging (Hoseini 
et al., 2021; Bondam et al., 2022). Composting, preliminary 
biodegradation, and the use of fungi (Hanc et al., 2021; Hoseini 
et al., 2021; Sabogal-Otálora; Palomo-Hernández; Piñeros-
Castro, 2022) or hot water/thermal treatment (Campos et al., 
2021; Bomfim et al., 2022) can reduce toxicity, thus increasing 
the amount of safety waste to be added to soil.

5 PARCHMENT AND COFFEE DREGS

5.1 Characteristics
Similar to coffee Exocarp, parchments (Figure 1) also 

have a high calorific value, which indicates the potential for 
energy generation (Srisang et al., 2022). Protásio et al. (2012) 
prepared coffee Exocarp and parchment briquettes by roasting 
and carbonization and evaluated their energy production 
potential, obtaining better results after performing the latter 
transformation process. 

Moreover, in the preparation of beverage coffee, hot 
water is added to a filter containing the grounds resulting 
from the roasting of dried and peeled berries, thus generating 
dregs as the remaining organic solid material. The potential 
use of this waste from the coffee chain has been the subject of 
research in recent years (Gebreeyessus, 2022).

Table 4: Composition of minerals in coffee berry pulp (dry 
matter basis).

Minerals Content

Ca (mg kg-1) 554.0

P (mg kg-1) 116.0

Fe (mg kg-1) 15.0

Na (mg kg-1) 100.0

K (mg kg-1) 1,765.0

Zn (mg kg-1) 4.0

Cu (mg kg-1) 5.0

Mg (mg kg-1) 6.3

B (mg kg-1) 26.0
Source: Braham and Bressani (1978).

Table 5: Composition of minerals in coffee berry Exocarp (dry 
matter basis).

 Minerals  Content
N – total (dag kg-1) 1.9
P – total (dag kg-1) 0.2

Ca (g kg-1) 3.0
Na (g kg-1) 40.7
K (g kg-1) 47.1

Zn (mg kg-1) 4.4
Cu (mg kg-1) 18.7
Mg (mg kg-1) 0.3

Source: Brandão et al. (2000).

4.2 Possible uses of waste
Due to the characteristics of the pulp and Exocarp, they 

have the potential for use as a source of K in soils. Fernandes 
et al. (2013) and Bosa et al. (2019) concluded that it is possible 
to reduce mineral fertilization with the use of coffee straw, 
an agroindustrial waste serving as a source of N, P, K and 
S. Other authors, such as Malta et al. (2008), Piccolo et al. 
(2013) and Sediyama et al. (2016), obtained good results using 
coffee Exocarp, showing an increase in soil nutrient levels and 
better beverage quality (coffee) than obtained with mineral 
fertilization. Lo Monaco et al. (2013) and Teixeira, Matos e 



Coffee Science, 18:e182078, 2023

FORESTI JUNIOR. et al.

5.2 Possible uses of waste
As previously discussed, fertigation with CW has 

enormous potential for improving soil attributes, increasing 
productivity, and decreasing production costs. However, even 
though localized application implies a better distribution of 
water and nutrients, it also carries a high risk of clogging with 
solids (and biofilm formation). To reduce the concentration 
of SS, Cunha et al. (2006) evaluated the use of parchment 
in organic filters for CW treatment, which subsequently 
increased the irrigation system’s operation time and improved 
distribution uniformity during fertigation. 

Furthermore, Magalhães, Lo Monaco, and Matos 
(2013) obtained a reduction in oils and fats (O & F) of 82.3% 
in SWW after the substrate was passed through parchment-
containing filters. However, the parchment needed to be 
compressed to reach better filtering efficiencies (Matos; 
Magalhães; Funakaga, 2006). According to Matos, Magalhães 
e Sarmento (2010), parchment-containing filters (for retaining 
particles from 3.0 to 8.0 mm) can work without interruption 
for approximately 1.5 h before the filter material needs to 
be replaced; the discarded material can then be composted 
afterward.

Regarding the use of coffee dregs as an agricultural 
fertilizer, Cruz and Cordovil (2015) compared the application 
of this waste in its raw form. The authors reported a decrease 
in lettuce, carrot, and spinach yield was observed with an 
increase in the amount of dregs added, probably due to the 
presence of caffeine, which may result in lower nitrogen 
availability to plants and even repress their growth (Cruz; 
Cordovil, 2015). Ribeiro et al. (2017) also observed growth 
inhibition when mixing in natura coffee dregs into industrial 
and domestic residues added to soil. Thus, it seems necessary 
to treat coffee dregs before their addition to soil.

For another perspective, Zhang and Sun (2017) 
used coffee waste in the composting of cattle manure and 
observed an improvement in the characteristics of organic 
compost. Castilhos et al. (2008) found that coffee dregs used 
as vermicompost had a higher content of humic substances 
than did cattle, sheep, pig and quail manure and yerba mate; 
humic substances are essential for improving soil structure 
(cementing agent) and increasing soil CEC (González-Moreno 
et al., 2020).

Murthy and Naidu (2012) conducted a review on the 
sustainability of the coffee industry, pointing out possible uses 
for the waste generated in berry processing and in beverage 
preparation. Among the options presented by the authors is 
the manufacture of activated charcoal or biochars from coffee 
dregs. For example, Namane et al. (2005), Reffas et al. (2010), 
Ching et al. (2011), Oliveira et al. (2021), Jóźwiak et al. (2021), 
Nguyen et al. (2021), and Yen et al. (2022) were successful 
in removing methane, heavy metals, phenols, dyes, ethylene, 

n-butane, phosphorus, iron, and nano-sized polystyrene plastic 
by applying untreated coffee dregs or after their activation 
with zinc chloride, phosphoric acid, nitric acid, potassium 
hydroxide, sulfuric acid by burning (in the absence of oxygen), 
and pyrolysis.

Other possible uses for coffee dregs mentioned by 
Murthy and Naidu (2012) include animal feed, oil production, 
biodiesel, bioethanol, adsorbents and antitoxic agents. Vitěz et 
al. (2016) also highlighted the potential for biogas production. 
Thus, given the presented results, there are different 
possibilities for using coffee processing by-products, which 
allows them to no longer be seen as an environmental problem 
but as a source of nutrients, carbon and energy.

6 CONCLUSIONS

Large amounts of by-products are generated in the 
processing of coffee berries and in beverage production, such 
as CW, Exocarps, parchments, pulps and coffee dregs, and it is 
necessary to present alternatives for their use/disposal;

CW treatment is complex due to the high organic 
load, presence of phenols and high potassium concentration. 
Anaerobic treatment may be more effective than aerobic 
treatment in reducing BOD;

Many studies show the potential for using CW in 
fertigation, with improved soil chemical attributes and 
increased crop productivity. However, the dose should be 
calculated according to nutritional criteria, with potassium as 
the chemical reference element;

The recirculation of CW reduces water consumption 
in the processing of coffee berries. To apply this technique, 
it is necessary to use chemical and physical processes for 
coagulation, sedimentation and pH control; and

Exocarp, pulp, parchment and coffee dregs have been 
found to be successful in the production of biogas, organic 
compounds, organic filters, and biochars, among others, as a 
source of nutrients, organic matter and energy.
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