UNIVERSIDADE FEDERAL DE VIÇOSA

MATHEUS MASSARIOL SUELA

STRUCTURAL EQUATION MODELS FOR GENOME-WIDE ASSOCIATION STUDY IN Coffea arabica

VIÇOSA - MINAS GERAIS 2021

MATHEUS MASSARIOL SUELA

STRUCTURAL EQUATION MODELS FOR GENOME-WIDE ASSOCIATION STUDY IN Coffea arabica

Dissertation submitted to the Genetics and Breeding Graduate Program of the Universidade Federal de Viçosa in partial fulfillment of the requirements for the degree of *Magister Scientiae*.

Adviser: Moysés Nascimento

Co-advisers: Camila Ferreira Azevedo Eveline Teixeira Caixeta Moura Gota Morota

VIÇOSA - MINAS GERAIS 2021

Ficha catalográfica elaborada pela Biblioteca Central da Universidade Federal de Viçosa - Campus Viçosa

Г

T S944s 2021	Suela, Matheus Massariol, 1997- Structural equation models for genome-wide association study in <i>Coffea arabica</i> / Matheus Massariol Suela. – Viçosa, MG, 2021. 1 dissertação eletrônica (59 f.): il. (algumas color.).
	Inclui anexos. Orientador: Moysés Nascimento. Dissertação (mestrado) - Universidade Federal de Viçosa, Departamento de Biologia Geral, 2021. Referências bibliográficas: f. 48-50. DOI: https://doi.org/10.47328/ufvbbt.2021.164 Modo de acesso: World Wide Web.
	 Café. 2. Modelagem de equações estruturais. Marcadores genéticos. 4. Genômica. I. Nascimento, Moysés. II. Universidade Federal de Viçosa. Departamento de Biologia Geral. Programa de Pós-Graduação em Genética e Melhoramento. III. Título.
	CDD 22. ed. 633.73

MATHEUS MASSARIOL SUELA

STRUCTURAL EQUATION MODELS FOR GENOME-WIDE ASSOCIATION STUDY IN Coffee arabica

Dissertation submitted to the Genetics and Breeding Graduate Program of the Universidade Federal de Viçosa in partial fulfillment of the requirements for the degree of *Magister Scientiae*.

APPROVED: July 27, 2021

Assent:

Matheus/Massario/Suela Author Sc einm

Moysés Nascimento Adviser

Aos meus pais, Geraldo e Rosimeri.

DEDICO.

AGRADECIMENTOS

A toda minha família, pelo imenso apoio durante minha vida, em especial ao meu pai Geraldo Guerino Suela, que sempre tira um instante de seu tempo para me enriquecer com seus ensinamentos técnicos e de vida e a minha mãe Rosimeri Massariol Suela, que sempre depositou em mim seu amor incondicional.

A minha namorada Letícia, pelo o amor, carinho, preocupação e confiança durante toda nossa jornada, ora nos momentos difíceis, ora nos momentos de vitórias, tornando minha caminhada muito mais segura e alegre.

Ao meu orientador, Moysés Nascimento, pela paciência, apoio e pela grande amizade.

A minha coorientadora, Camila Ferreira Azevedo, que desde a graduação me enriqueceu com suas experiências e com sua amizade.

Aos meus coorientadores Gota Morota (*Virginia Polytechnic Institute and State University*) e Eveline Teixeira Caixeta Moura (Embrapa – Café), pela ajuda em análises e disponibilização de dados.

Ao amigo, Mehdi Momen (*University of Wisconsin* – Madinson), que me ajudou em análises chaves deste projeto.

Aos meus amigos do LICAE (Laboratório de Inteligência Computacional e Aprendizado Estatístico), que foram minha família, tornando minha jornada muito mais alegre e descontraída em Viçosa.

À banca, composta por Ana Carolina Nascimento e Camila Ferreira Azevedo que aceitaram o convite que lhes foi feito e, dessa forma, colaboraram para a conclusão deste projeto.

À agência de fomento CNPq, que colaborou para que essa pesquisa fosse possível.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001.

BIOGRAFIA

MATHEUS MASSARIOL SUELA, filho de Rosimeri Massariol Suela e Geraldo Guerino Suela, nasceu em Colatina, Espírito Santo, em 22 de março de 1997.

Em março de 2012, ingressou no curso técnico em agropecuária no Instituto Federal do Espírito Santo – Campus Itapina, formando-se em dezembro de 2014.

Ingressou no curso de Agronomia, em março de 2015, na Universidade Federal de Viçosa, Minas Gerais – MG, graduando-se em janeiro de 2020.

Em março do mesmo ano, iniciou o curso de mestrado do Programa de Pós-Graduação em Genética e Melhoramento na Universidade Federal de Viçosa, submetendo-se à defesa da dissertação em 26 de julho de 2021.

RESUMO

SUELA, Matheus Massariol, M.Sc., Universidade Federal de Viçosa, julho de 2021. **Structural equation models for genome-wide association study in** *Coffea arabica*. Orientador: Moysés Nascimento. Coorientadores: Camila Ferreira Azevedo, Eveline Teixeira Caixeta e Gota Morota.

O melhoramento em café foi baseado em técnicas clássicas por muito tempo, porém, com o advento de técnicas genômicas e de fenotipagem de precisão, os programas de melhoramento vêm apresentando melhores resultados e mais velozes, mesmo com os programas se tornando cada vez mais complexos, em termos de quantidades e tipos de características estudadas. Dessa forma, a existência de interrelações entre caracteres podem gerar impactos importantes em um programa de melhoramento, como por exemplo, na descoberta de regiões genômicas que contribuem para determinadas características. Especificamente, tais características podem atuar tanto de forma direta quanto indireta na característica em estudo. Sabendo disso, compreender os efeitos diretos e indiretos que um caráter exerce em outro, é de grande importância para a fase de seleção. Tradicionalmente, para realizar o estudo das associações entre características, técnicas multivariadas são aplicadas, porém, são tais metodologias negligenciam as interrelações entre as mesmas. Dessa forma, a utilização da Rede Bayesiana (BN) em conjunto com Modelo de Equações Estruturadas (SEM) sob o enfoque do estudo de associação genômica ampla (GWAS), permite quantificar o efeito dos marcadores, particionando seus valores em efeitos diretos e indiretos para as características presentes na rede formada. Com o objetivo de explorar estas inter-relações, foram analisados fenótipos relacionados às características morfológicas (tamanho do fruto, número de nós reprodutivos), fisiológicas (vigor vegetativo) e produtivas (produção) em 195 genótipos de Coffea arabica, provenientes de uma parceria entre a Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) e Universidade Federal de Viçosa (UFV). A rede fenotípica inferida por meio do algoritmo Hill Climbing foi usada para estimar os coeficientes estruturais. Realizando uma integração entre modelos multivariados - GWAS e SEM-GWAS foi possível identificar inter-relação positiva entre vigor vegetativo em produção e de vigor vegetativo pra número de nós reprodutivos e negativo de número de nós reprodutivos e tamanho do fruto para produção. Também foi possível detectar regiões genômicas significativas, e assim, identificar três genes que atuam diretamente sobre produção.

Palavras-chave: *Coffea arabica*. Redes Bayesianas. Modelo de Equações Estruturadas. GWAS.

ABSTRACT

SUELA, Matheus Massariol, M.Sc., Universidade Federal de Viçosa, July, 2021. Structural equation models for genome-wide association study in *Coffea arabica*. Adviser: Moysés Nascimento. Co-advisers: Camila Ferreira Azevedo, Eveline Teixeira Caixeta and Gota Morota.

Coffee breeding techniques were based on classical techniques for a long time, however, with the advent of genomic techniques and precision phenotyping, breeding programs have been showing best and faster results, even with the programs becoming more complex, in terms of quantities and types of characteristics studied. Thus, the existence of interrelationships between characters can generate important impacts in a breeding program, such as the discovery of genomic regions that contribute to certain characteristics, these can act directly, or indirectly. Knowing this, understanding the direct and indirect effects that one character has on another is of great importance for the selection phase. Traditionally, multivariate techniques are applied, but phenotypic interrelationships are neglected. Thus, the use of the Bayesian Network (BN) in conjunction with the Structured Equation Model (SEM) under the focus of the genomic wide association study (GWAS), allows quantifying genetic parameters, partitioning such values into direct and indirect effects for the traits. present in the formed network. In order to explore these interrelationships, they were able to phenotypes related to morphological (fruit size and number of reproductive nodes), physiological (vegetative vigor) and productive (production) characteristics in 195 Coffea arabica genotypes from a partnership between Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) and Federal University of Viçosa (UFV). The phenotypic network inferred by means of the Hill Climbing algorithm was used to estimate the appropriate coefficients. By performing an integration between multivariate models - GWAS and SEM-GWAS it was possible to identify a positive interrelationship between vegetative vigor in yield and vegetative vigor for the number of reproductive nodes and negative for the number of reproductive nodes and fruit size for yield. It was also possible to detect significant genomic regions, and thus identify three genes that act directly on yield.

Keywords: Coffea arabica. Bayesian Network. Structural Equation Models. GWAS.

SUMMARY

GE	NERAL	INTRODUCTION	10
RE	FEREN	CES	11
1	INTRO	DUCTION	13
2	MATE	RIAL AND METHODS	15
2.1	Phe	enotypic and Genotypic Data	15
2.2	Bay	yesian multi-trait genomic best linear unbiased prediction	15
2.3	Bay	yesian networks	16
2.4	Mu	lti-trait MTM-GWAS	17
2.5	Str	uctural equations model – GWAS	17
3	RESUL	/TS	19
3.1	Phe	enotypic correlations and bayesian network structure	19
3.2	Str	uctural equation coefficients	21
3.3	Par	titioning of SNP effects	22
	3.3.1	Yield	22
	3.3.2	Vegetative Vigor	24
	3.3.3	Fruit Size	25
	3.3.4	Number of Rproductive Nodes	26
3.4	Ger	nome-Wide Association Study for Yield, Vegetative Vigor, Fruit Size and	
Nui	mber of F	Reproductive Nodes	28
4	DISCU	SSION	45
5	CONC	LUSION	47
6	REFER	RENCES	48
7	ATTAC	CHMENTS	51

GENERAL INTRODUCTION

Coffee is the second most important commodity in international trade, after crude oil (MISHRA, 2019), and has a very large impact in several countries in Asia, Africa and Latin America, both in economic and social terms. The total world production in the 2020/21 harvest is equivalent to approximately 10.5 million tons processed (USDA, 2021). Brazil is the world is largest producer and exporter of coffee (arabica and conilon), with a total of approximately 3.8 million tons of processed coffee produced in the 2020/21 harvest, according to data from the Companhia Nacional de Abastecimento (CONAB, 2021). This production comes from approximately 2.2 million hectares, being disposed in around 277.3 thousand hectares in the formation phase and around 1.89 million hectares in the production phase (CONAB, 2021). Of the total produced in the 2020/21 harvest, approximately 77.3% comes from arabica coffee, the other 22.7% comes from conilon coffee.

The genus *Coffea* belongs to the Rubiaceae family and consists of more than 125 species (DAVIS, 2011; DAVIS et al. 2006; RAZAFINARIVO et al. 2013). However, commercially, there are two species that stand out, the arabica coffee (*Coffea arabica*) and the conilon coffee (*Coffea canephora*). According to Ferrão et al. (2017) and Carvalho (1946) the species *C. canephora* differs from *C. arabica* in several agronomic characteristics, which from the viewpoint of genetic improvement are very important, namely: i) it has a multi-stemmed shrub; ii) larger leaves, well wavy, with a lighter green coloration; iii) self-incompatible flowers; iv) fruits a little more spherical, smaller, with red, yellow and orange color when ripe and thinner exocarp; v) seeds of variable size, with a well-adhering silvery skin, green endosperm and higher caffeine content. When it comes to the genome, *C. arabica* is a tetraploid plant (2n = 4X = 44), while *C. canephora* is a diploid (2n = 2X = 22).

According to (MISHRA, 2019), the genetic improvement programs for coffee, initially with Arabica and only from the 1950s onwards with conilon, initially aimed at increasing productivity and resistance to rust, only from 1990 onwards than others characteristics, such as beverage quality, pest and drought resistance gained notoriety. This start was made using conventional breeding techniques, but this became a major bottleneck, as from the selection of parents, through hybridization until finally reaching the progeny evaluations, approximately 30 years are required to develop a new cultivar, in addition to which becomes quite an expensive process. Thus, several strategies had to be implemented for the gains to be greater. One of the applied strategies was the genomic association, which consists in the application of

methodologies in order to detect significant markers for certain characteristics of interest. This technique allows the quantification of the effects of markers on the evaluated trait, but currently, breeding programs have been using several traits at once, since certain traits can positively, negatively or not affect one another. Thus, this work proposes a new way of using GWAS (Genome-Wide Association Study) in morphological, pest and productive characteristics of Arabica coffee, using Bayesian Networks (BN) and Structured Equation Models (SEM), partition the effect of the marker into direct and indirect, allowing the analysis of the direct and indirect impact on the target trait compared to several others and also identify significant markers that represent a candidate gene.

REFERENCES

CONAB - ACOMPANHAMENTO DA SAFRA BRASILEIRA DE CAFÉ. Terceiro levantamento, Setembro de 2021. v. 8 - Safra 2021, n. 3.

MISHRA, M. K. 2019. Genetic resources and breeding of coffee (*Coffea* spp.). In: Advances in Plant Breeding Strategies: Nut and Beverage Crops. Springer, Cham, p. 475-515.

DAVIS, A. P.; GOVAERTS, R.; BRIDSON, D. M.; STOFFELEN, P. An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Botanical Journal of the Linnean Society, London, v. 152, p. 465-512, July 2006.

DAVIS, A. P.; TOSH, J.; RUCH, N.; FAY, M. F. Growing coffee: Psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data, implications for the size, morphology, distribution and evolutionary history of Coffea. Botanical Journal of the Linnean Society, London, v. 167, p. 1-21, Dec. 2011.

CARVALHO, A. Distribuição geográfica e classificação botânica do gênero Coffea com referência especial à espécie Arabica. Separata dos boletins da superintendência de serviços de café. Campinas, SP: IAC, dez. 1945 a abr. 1946.

Ferrão, R.G., de Muner, L.H., da Fonseca, A.F.A. and Ferrão, M.A.G., 2016. *Café Conilon*. Vitória, ES: Incaper, 2017.

Structural Equation Models for Genome-Wide Association Study in Coffea arabica

ABSTRACT

Yield is one of the most important characteristics for arabica coffee, however, it is affected by several other characteristics, even so, plant breeders search for to maximize this characteristic directly and/or indirectly, using characteristics that are often correlated. Thus, structural equation modeling (SEM) - GWAS was applied in order to explore interrelated dependencies between phenotypes related to morphology (fruit size, number of reproductive nodes), physiology (vegetative vigor) and productive (yield) characteristics in 195 *Coffea arabica* genotypes from a partnership between Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) and Universidade Federal de Viçosa (UFV). The phenotypic network inferred by means of the Hill Climbing algorithm was used to estimate the appropriate coefficients. By performing an integration between multivariate models - GWAS and SEM-GWAS it was possible to identify a positive interrelationship between vegetative vigor in production and vegetative vigor for the number of reproductive nodes and negative for the number of reproductive nodes and size of the fruit for production. It was also possible to detect significant genomic regions, and thus identify three genes that act directly on yield.

1 INTRODUCTION

Coffee is one of the most widely consumed beverages worldwide, with Brazil being the world's largest producer. Of all the coffee produced in the world (*Coffea canephora* and *Coffea arabica*), Brazil produces 39.76%, if we consider only Arabica coffee, the target of our study, this number already rises to 48.68% (USDA, 2021).

Due to the increase in coffee consumption in countries that were not as traditional, such as China (Nam, Z., 2014; DCCC, 2019), it is necessary to promote research that contributes to greater productivity and sustainability of production chain. In this context, genetic breeding is one of those responsible for promoting such advances in the midst of the development of cultures that meet the demands of the market (Oliveira et al., 2010; Carvalho et al., 2011; Barka et al., 2017). However, the improvement process takes time, since this culture has a long cycle, high size and a long juvenile period (Ferrão et al., 2017). Thus, it is recommended to apply innovative tools, such as the use of biotechnology, which can contribute to the genetic progress of the culture (Mishra and Slater, 2012; Ferrão et al., 2015).

Among these methodologies, genome-wide association studies (GWAS) have become increasingly popular for the elucidation of the genetic architecture of economically important traits (Momen et al., 2019). In coffee, GWAS have been successful in identifying regions on genome associated with a important of phenotypes, as example, yield, abiotic and biotic stresses, and plant morphological traits (Sant' Ana et al., 2018; Tran et al., 2018).

In breeding programs, correlated traits are recorded on the same material and the association mapping is performed independently for each trait. This approach can fail to study the genetic interdependence among traits and impose limitations on elucidating the genetic mechanisms underlying a complex system of traits (Momen et al., 2019). To circumvent this issue, the multi-trait GWAS (MTM-GWAS) was proposed. According to Zhou and Stephens (2012), Korte et al., (2012), O'reilly et al., (2012) and Momen et al. (2018) this approach reduces false positives and increases the statistical power of association tests in GWAS. Although MTM-GWAS is a valuable approach, this methodology does not inform how the traits are interrelated, that is does not provide information about causal relationships.

Momen et al. (2018) proposed to use Structural equation modeling for association studies (SEM-GWAS). According with these authors, compared to MTM-GWAS, the SEM-GWAS approach captures complex relationships and delivers a more comprehensive understanding of single nucleotide polymorphism (SNP) effects. Specifically, it can partition the total SNP

effects acting on a trait into direct and indirect effects enhancing our understanding of complex relationships among agronomic traits.

In a coffee breeding program context, some traits have an important impact on the culture. Among than, the Yield (Y), Vegetative Vigor (VV), Fruit Size (FS) and Number of Reproductive Nodes (NRN) deserves attention. According to Cilas et al. (2006) individuals who have larger amounts of NRN tend to have higher productions. According Ferrão et al., 2012, the FS is one of the main trait used to select production. The VV which shows your growth potential. Finally, the main trait in a breeding program is Yield (Y), which is, extremely impacted by several other characteristics at once.

In this context, we aimed to (1) estimate genetic parameters for phenological traits in the *Coffea arabica*; and (2) to enhance the understanding of the genetic architecture of these traits using SEM-GWAS approach.

2 MATERIAL AND METHODS

2.1 Phenotypic and Genotypic Data

The phenotypic and genotypic data comes from the *C. arabica* breeding program of the partnership between EPAMIG, UFV and EMBRAPA. An experimental area is maintained at the Department of Phytopathology – UFV (lat. 20°44'25" S, long. 42°50'52" W). This database contains 13 progenies from crosses between three parents of the Catuaí cultivar and three parents of the Hybrid of Timor (HdT), built in relation to coffee rust (*Hemileia vastatrix*). Fifteen genotypes were selected from each progenies mentioned above, totaling 195 individuals, which were genotyped for 21,211 SNP markers.

The genotypes were planted on February 11, 2011, using the spacing of 3.0 meters between rows and 0.7 meters between plants. Nutritional management was carried out following the requirements of the crop. More details can be seen in Sousa et al. (2019).

The phenotypic database used comprised four traits, which are: Yield (Y), Vegetative Vigor (VV), Number of Reproductive Nodes (NRN) and Fruit Size (FS). There was correction of the phenotypes for the effect of years, plots and years x plots interaction. The analyzes were performed considering the mixed linear models (REML/BLUP procedure), using the Selegen-REML/BLUP software (Resende, 2016b), using the following statistical model:

$$\mathbf{y} = \mathbf{X}\mathbf{u} + \mathbf{Z}\mathbf{g} + \mathbf{W}\mathbf{p} + \mathbf{V}\mathbf{r} + \mathbf{T}\mathbf{b} + \mathbf{R}\mathbf{i} + \mathbf{e},$$
(1)

Where, **y** is the vector of data, **u** is the vector of general average in each year of evaluation, **g** is the vector of progeny effects, **p** is the vector of permanent variance between individuals, **r** is the vector of variance between types of populations, **b** is the vector of variance between plots, **i** is the vector of variance of the progenies x years interaction and **e** vector of residuals. **Z**, **W**, **V**, **T** and **R** is incidence matrix.

Quality analyzes were carried out with the parameters CR (Call Rate) and MAF (Minor Allele Frequency) equal to or greater than 90% and 5%, respectively, totaling 20,477 SNP markers.

2.2 Bayesian multi-trait genomic best linear unbiased prediction

The Bayesian multi-trait genomic best linear unbiased prediction (BMT-GBLUP) model used can be described as follows:

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{Z}\mathbf{g} + \mathbf{e},\tag{2}$$

where, **y** is the vector of phenotypes (Y, VV, FS and NRN) (t = 4), X is the t x k incidence matrix of non-genetic effects; **b** is the $k \times 1$ vector of the non-genetic effects; **Z** is the $n \times m$ incidence matrix relating accessions with additive genomic effects; \mathbf{g} is the m \times 1 vector of additive genomic effects, and e is the $t \times 1$ vector of residuals; and e is the $t \times 1$ vector of residuals. The g and e vectors were assumed to follow the independent multivariate Gaussian distributions $\mathbf{g} \sim \mathbf{N}(\mathbf{0}, \Sigma_g \otimes \mathbf{G})$ and $\mathbf{e} \sim \mathbf{N}(\mathbf{0}, \Sigma_e \otimes \mathbf{I})$, respectively, where **G** is the genomic relationship matrix for genetic effects, I is the identity matrix for residuals, Σ_g and Σ_e are the $(t \times t)$ variance-covariance matrices of genetic effects and residuals, respectively. Here, \otimes indicates the Kronecker product. The **G** matrix was computed as **WW'**/ $2\sum_{n=1}^{m} p_j(1-p_j)$, where **W** is an n \times m matrix of centered SNP genotypes having values of $0 - 2p_i$ for zero copies of the reference allele, $1 - 2p_i$ for one copy of the reference allele, and $2 - 2p_i$ for two copies of the reference allele (VanRaden, 2008). Here, p_i corresponds to the allele frequency at SNP j = 1, ..., m. Flat priors were assigned to the intercepts and to the vector of fixed effects. Independent multivariate normal priors with null mean and inverse Wishart distributions, with hyperparameters v and S, where v is a scalar degrees of freedom and S is a positive-semi-defined symmetric matrix, for covariances matrices were assigned to the vectors of random additive genomic effects and residual effects.

Marginal posterior densities were obtained using a Markov Chain Monte Carlo (MCMC) approach with Gibbs sampling algorithm. Was used 1,200,000 MCMC samples with a burn-in of 50,000. The MCMC samples were thin interval equal to 50, resulting in 23,000 MCMC samples for inference. The posterior means of genetic values were used as inputs for inferring a trait network.

2.3 Bayesian networks

Bayesian networks describe conditional independence relationships between multivariate phenotypes (Korb & Nicholson, 2011). In this structure there are nodes, which would be the phenotypes, and the edges that connect the phenotypes if they are directly affected, the absence of an edge implies conditional independence between variables. The algorithm based on Hill Climbing (HC) scores was used, implemented in the R bnlearn package (Scutari, 2010) to infer the structure of the residual phenotypic Bayesian network for four (Y, VV, FS and NRN) economic traits of coffee. Was computed the Bayesian information criterion (BIC) score afer each edge removal in the algorithm to infer their relative contribution to the overall BIC score of the network and estimated the strength and uncertainty of direction of each edge probabilistically by bootstrapping (n = 50,000 bootstraping samples). An edge strength $\ge 80\%$ was used to select only high-confidence relationships.

2.4 Multi-trait MTM-GWAS

MTM-GWAS analyzes were performed using the SNP Snappy strategy (Meyer & Tier, 2012) implemented in the mixed model package WOMBAT (Meyer, 2007), according to the following model, which did not consider the inferred network structure:

$$\mathbf{y} = \mathbf{W}\mathbf{s} + \mathbf{X}_{b} + \mathbf{Z}_{q} + \mathbf{e},\tag{3}$$

where **y** is the vector of phenotypes (t = 5), **W** is the n x t by t matrix of genotype codes of SNP marker j, **s** is the t × 1 vector of direct effects for SNP marker j, and other terms were previously described. Variance-covariance structures were assumed the same as for Eq. (1). Was fitted MTM-GWAS for each SNP individually was fitted to obtain the following vector of marker estimates for each trait: $\mathbf{s} = [\mathbf{s}_{Y}, \mathbf{s}_{VV}, \mathbf{s}_{FS}, \mathbf{s}_{NRN}]$. A t statistic was used to obtain Pvalues: $\mathbf{T}_{ij} = \mathbf{s}_{j}/\mathbf{se}(\mathbf{s}_{j})$, where s is the point estimate of the *j*th SNP direct effect and $\mathbf{se}(s_{j})$ is its standard error. The *q*-values were obtained by correcting the *P*-values for bonferroni protection with a significance level of 0.01.

2.5 Structural equations model – GWAS

The structured equation model manages to relate the network to the various phenotypes involving recursive effects. The use of SEM-GWAS was conducted using the SNP Snappy Strategy (Meyer & Tier, 2012) implemented in the mixed model package WOMBAT (Meyer, 2007). The SEM model described in Gianola and Sorensen was extended to GWAS according to Momen et al. (2018) and Momen et al. (2019).

$$\mathbf{y} = \mathbf{A}\mathbf{y} + \mathbf{W}\mathbf{s} + \mathbf{Z}\mathbf{g} + \boldsymbol{\epsilon},\tag{4}$$

where y is the vector of phenotypes (t = 4), and Λ is a t × t matrix of regression coefficients (structural coefficients) based on the learned structure from the Bayesian network using the residuals:

$$\mathbf{\Lambda} = \begin{bmatrix} 0 & I_2 \,\lambda_{VV \to Y} & I_3 \,\lambda_{FS \to Y} & I_3 \,\lambda_{NRN \to Y} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & I_2 \,\lambda_{VV \to NRN} & 0 & 0 \end{bmatrix}$$

The vectors **g** and **e** were assumed to have a joint distribution $\begin{bmatrix} g \\ e \end{bmatrix} = N \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \Sigma_{g} \otimes \mathbf{G} & 0 \\ 0 & \psi \end{bmatrix} \}$, and the residual covariance matrix was diagonal, with:

All analyzes followed a routine that can be seen in figure 1.

The structural coefficients represented the size of the edge effect between phenotypes in the Bayesian network, so that the direct and indirect effects of the SNP effect could be compensated. While MTM-GWAS uses the effect of SNP as a direct effect, SEM considers it to be the direct effect of SNP, the indirect effects for the same SNP are obtained by those mediated by up-stream traits in the phenotypic network. The calculation of indirect effects based on the multiplication of path coefficients for each path linking the SNP to an associated variable and then adding all these paths Mi et al. (2010) and Jiang et al. (2013). Thus, the general effect of the SNP is the sum of the direct and indirect effects sought for an analyzed characteristic.

The knowledge of direct and indirect effects is of great importance for the selection phase in breeding programs, whether plants or animals, which according to Valente et al. (2013) it is not possible using just MTM-GWAS. Thus, was used the results obtained with this methodology so that we could select markers that reflected significant effects on the characteristics under study.

3 RESULTS

3.1 Phenotypic correlations and Bayesian network structure

Descriptive statistics for the traits investigated are reported in Table 1. Average values were 5.19 liter/plant (4.76, 5.59) for Y, 7.35 (2.07, 7.47) for VV, 2.32 (1.99, 2.37) for FS, and 8.62 (7.19, 8.89) for NRN. Values in parentheses show lower and upper bounds of the highest 95% probability density regions (HPD95) obtained from the estimated marginal densities are given in parantheses

Genomic, residual correlations and heritability estimates obtained with a multi-trait Bayesian GBLUP model are reported in Table 1. No genomic correlation was obtained. Among residual correlations, we found relevant positive correlations between FS and Y (0.30) and between NRN and Y (0.38). Heritability estimates were moderate for VV (0.39) and FS (0.61), and low for Y (0.14) and NRN (0.13).

Table 1: Genomic (upper triangular) and residual (lower triangular) correlations, and genomic

 heritabilities (diagonals) for the coffee traits and their respective HPD (in parenthesis).

	Y	VV	FS	NRN
Y	0.14 (0.01,0.33)	0.44 (-0.64,0.92)	-0.32 (-0.81,0.51)	0.57 (-0.49,0.98)
VV	0.47 (-0.23,0.58)	0.39 (0.13,0.66)	-0.30 (-0.72,0.64)	0.40 (-0.67,0.90)
FS	0.30 (0.03,0.45)	-0.01 (-0.17,0.28)	0.61 (0.33,0.79)	-0.25 (-0.79,0.49)
NRN	0.38 (0.27,0.59)	0.40 (-0.25,0.53)	0.19 (-0.17,0.35)	0.13 (0.01,0.56)

Y: yield; VV: vegetative vigor; FS: fruit size; NRN: number of reproductive nodes. Relevant correlations (HPD95 not including 0) are highlighted in bold. Bayesian network structure learning algorithms were applied to the residual plus breeding value vector of the Bayesian GBLUP analysis to identify dependencies between phenotypes. The results obtained with the HC algorithm are showed in the Figure 2.

Direction values represent the probability of the arc pointing to a particular node, and strength values represent

In this network, we found a direct dependence from VV to NRN (68% of bootstrap samples and 100% of strength), NRN to Y (100% of bootstrap samples and 81% of strength), VV to Y (100% of bootstrap samples and 99% of strength) and FS to Y (100% of bootstrap samples and 82% of strength). The indirect path between VV and Y was mediated by the NRN.

The greatest decrease in BIC was observed when removing the VV \rightarrow NRN arcs, suggesting that this path may play the most important role in the network (Table 2).

Figure 2: Network structure inferred from the vector of the residuals using the Hill-Climbing (HC) algorithm. Network structure inferred combining the results obtained with HC algorithm. Structure learning test was performed with 50,000 bootstrap samples. The percentages reported beside the edges indicate the proportion of the bootstrap samples supporting the edge and (in parentheses) the proportion having the direction shown.

Table 2: Bayesian Information Criterion (BIC) score for the Hill Climbing (HC) algorithm and path coefficients derived from the structural equation models.

BIC (a)PathBIC (b)Path coefficient (λ)
--

-1395.29	$VV \rightarrow NRN$	-15.19	0.0351
	$VV \rightarrow Y$	-15.09	0.0047
	$NRN \rightarrow Y$	-2.37	-0.0438
	$FS \rightarrow Y$	-2.54	-0.0338

(a) Bayesian information criterion score (BIC) for the entire network.

(b) BIC scores for pairs of nodes; the change in the score when removing the arc relative to the entire network score is showed.

Y: yield; VV: vegetative vigor; FS: fruit size; NRN: number of reproductive nodes

3.2 Structural equation coefficients

Using the Bayesian network technique, it was possible to model the interrelationships between the four characteristics (Y, VV, NRN and FS), which enabled the construction of the DAG (Direct Acyclic Graphic), as can be seen in Figure 2. Using the SEM technique, it was possible to estimate the structural coefficients for each path, which enabled the estimation of the SNP effects. Table 2 shows the estimates of the structural coefficients. The coefficients of the NRN \rightarrow Y and FS \rightarrow Y paths were negative, while VV \rightarrow NRN and VV \rightarrow Y were positive. The coefficient referring to the NRN \rightarrow Y path had the highest value, while VV \rightarrow Y had the lowest coefficient.

Figure 3: Figure for path analysis of SNP effects for four coffee-related traits. Y: yield; NRN: number of reproductive nodes; FS: fruit size; VV: vegetative vigor. The gray dashed arrows indicate the direction of relationship according to the learned causal structure. λ_{24} : VV \rightarrow NRN;

 λ_{21} : VV \rightarrow Y; λ_{41} : NRN \rightarrow Y; λ_{31} : FS \rightarrow Y. The black arrows correspond to the direct effect of SNPj on the trait.

3.3 Partitioning of SNP effects

Using SEM-GWAS, it was possible to partition the effects of SNP into direct and one or more indirect effects. Manhattan plots for decomposition of the SNP effect are shown in Figs. 4-7.

3.3.1 Yield

$$\lambda_{24}$$
: VV \rightarrow NNR; λ_{21} : VV \rightarrow Y; λ_{41} : NNR \rightarrow Y; λ_{31} : FS \rightarrow Y

Overall SNP effects for Y could be partitioned into one direct effect and four indirect effects (Fig. 1): (1) VV \rightarrow Y, (2) NRN \rightarrow Y, (3) FS \rightarrow Y and (4) VV \rightarrow NRN \rightarrow Y. VV, NRN and FS influenced Y through an indirect path with structural coefficient λ_{21} (0.0047), λ_{41} (-0.0438) and λ_{31} (-0.0338). VV also indirectly contributed to NRN, which in turn affected Y, represented by the product of the coefficients $\lambda_{24} \times \lambda_{41}$ (0.0351 x -0.0438 = -0.0015). The contribution can be seen in Fig. 4.

$$\begin{split} Direct_{s_{j} \rightarrow y1_{Y}} &= s_{j(y1_{Y})} \\ Indirect(1)_{s_{j} \rightarrow y1_{Y}} &= \lambda_{21}s_{j(y2_{VV})} \\ Indirect(2)_{s_{j} \rightarrow y1_{Y}} &= \lambda_{41}s_{j(y4_{NRN})} \\ Indirect(3)_{s_{j} \rightarrow y1_{Y}} &= \lambda_{31}s_{j(y3_{FS})} \\ Indirect(4)_{s_{j} \rightarrow y1_{Y}} &= \lambda_{21}\lambda_{41}s_{j(y2_{VV})} \\ Total_{s_{j} \rightarrow y1_{Y}} &= Direct_{s_{j} \rightarrow y1_{Y}} + Indirect(1)_{s_{j} \rightarrow y1_{Y}} + Indirect(2)_{s_{j} \rightarrow y1_{Y}} \\ &+ Indirect(3)_{s_{j} \rightarrow y1_{Y}} + Indirect(4)_{s_{j} \rightarrow y1_{Y}} \\ &= s_{j(y1_{Y})} + \lambda_{21}s_{j(y2_{VV})} + \lambda_{41}s_{j(y4_{NRN})} + \lambda_{31}s_{j(y3_{FS})} + \lambda_{24}\lambda_{41}s_{j(y2_{VV})} \end{split}$$

SNPs over the Chromossome

Figure 4: Manhattan plots for SNP effects on yield obtained using SEM-GWAS based on the network structure learned by Hill Climbing algorithm. VV: vegetative vigor; NRN: number of reproductive nodes; Y: yield

3.3.2 Vegetative Vigor

In the case of VV, the Bayesian network algorithm did not identify any mediator trait (Fig. 1). Therefore, the genomic architecture of VV was seemingly controlled only by direct SNP effects, i.e., the total effect of the jth SNP on VV corresponds to its own direct effect (Fig. 5).

 $Direct_{s_j \to y2_{VV}} = s_{j(y2_{VV})}$ $Total_{s_j \to y2_{VV}} = Direct_{s_{j(y2_{VV})}} = s_{j(y2_{VV})}$

Figure 5: Manhattan plots for SNP effects on number of reproductive nodes obtained using SEM-GWAS based on the network structure learned by Hill Climbing algorithm. VV: vegetative vigor.

3.3.3 Fruit Size

In the case of FS, the Bayesian network algorithm did not identify mediator trait (Fig. 1). Therefore, the genomic architecture of FS was seemingly controlled only by direct SNP effects, i.e., the total effect of the jth SNP on FS corresponds to its own direct effect (Fig. 6).

$$Direct_{s_j \to y_{3_{FS}}} = s_{j(y_{3_{FS}})}$$
$$Total_{s_j \to y_{3_{FS}}} = Direct_{s_{j(y_{3_{FS}})}} = s_{j(y_{3_{FS}})}$$

Figure 6: Manhattan plots for SNP effects on fruit size obtained using SEM-GWAS based on the network structure learned by Hill Climbing algorithm. FS: fruit size.

3.3.4 Number of Rproductive Nodes

The overall SNP effect on NRN was decomposed into one direct effect and one indirect effect mediated by VV (VV \rightarrow NRN) with a structural coefficient λ_{24} (0.0351). The contribution to SNP effects on NRN mediated by VV (Fig. 7).

$$Direct_{s_{j} \to y_{4_{NRN}}} = s_{j(y_{4_{NRN}})}$$
$$Indirect(1)_{s_{j} \to y_{4_{NRN}}} = \lambda_{24}s_{j(y_{2_{VV}})}$$

 $Total_{s_{j} \rightarrow y_{1_{Y}}} = Direct_{s_{j} \rightarrow y_{4_{NRN}}} + Indirect(1)_{s_{j} \rightarrow y_{4_{NRN}}} = s_{j(y_{4_{NRN}})} + \lambda_{24}s_{j(y_{2_{VV}})}$

Figure 7: Manhattan plots for SNP effects on number of reproductive nodes obtained using SEM-GWAS based on the network structure learned by Hill Climbing algorithm. VV: vegetative vigor; NRN: number of reproductive nodes.

Was compared the direct and indirect SNP effects with the total SNP effects for NRN and Y. Direct SNP effects were positively highly correlated ($R^2 > 0.98$) with total SNP effects for all traits. For the indirect SNP effects with total SNP effects were positively correlated for VV \rightarrow NNR (0.02) and VV \rightarrow Y (0.03), and negatively correlated for NRN \rightarrow Y (0.72), FS \rightarrow Y (0.14) and VV \rightarrow NNR \rightarrow Y (0.03), as seen in the attachments.

3.4 Genome-Wide Association Study for Yield, Vegetative Vigor, Fruit Size and Number of Reproductive Nodes

Two hundred and ninety-seven SNP were statistically significant, however, seven are allocated in the Unchr (Uncharacterizad chromosome), the Unchr is constituted by a set of scaffolds with disordered sequences, according to information found in this region not discussed in this work. Thus, 290 significant SNP were obtained, where five are related to the NRN characteristic and two hundred and eighty-five to the Y characteristic (q < 0.01) (Table 3). These SNP are distributed on chromosomes 1 (Chr 1) to 11 (Chr 11) (Figure 4 to 7).

Table 3: SNP with significant associations (q<0.01), chromosome and position associated with Y, VV, FS and NRN.

SNP	Chr	Position	q-value
V5938	Unchr	177	4.80E-03
V3683	Unchr	4424	7.36E-04
V1324	Unchr	14706	1.07E-03
V2880	Unchr	24645	2.61E-03
V887	Unchr	402268	2.70E-03
V888	Unchr	402295	4.07E-05
V1309	Unchr	453050	9.09E-03
V2681	1	3925767	1.87E-03
V2102	1	8299841	7.02E-04
V773	1	8922851	4.05E-04
V1101	1	9651201	3.79E-03
V2830	1	10231888	3.76E-04
V510	1	11268905	5.82E-03
V2856	1	12667165	9.96E-05
V2857	1	12667184	3.29E-05
V2861	1	12874767	1.10E-03
V2935	1	14094952	9.59E-03
V2032	1	33500866	2.88E-04
V3116	1	34314786	9.53E-03
V3117	1	34382600	9.69E-03
V3244	1	36669403	2.47E-04
V1656	1	37086050	2.95E-05
V1389	1	37493921	3.50E-04
V1393	1	37493976	7.27E-04
V3534	1	38197381	4.86E-03
V3598	1	38972375	4.04E-03
V3635	1	39279256	9.00E-03
V3638	1	39283941	4.10E-04

V3664	1	39458195	3.79E-03
V3670	1	39517087	2.32E-06
V3671	1	39517161	7.83E-05
V3674	1	39574545	3.80E-05
V3379	1	40487725	2.48E-03
V3469	1	40800016	8.12E-03
V3904	1	41046162	8.79E-03
V3905	1	41046176	4.11E-03
V3488	1	41151580	5.20E-03
V3489	1	41151609	4.09E-03
V3526	1	41438835	7.42E-03
V3537	1	41565994	3.65E-04
V3563	1	41875031	5.61E-04
V3571	1	41913639	2.90E-05
V3578	1	42059867	2.72E-03
V3579	1	42059892	1.84E-04
V3585	1	42062620	3.01E-04
V3589	1	42094959	2.10E-05
V3605	1	42356201	1.85E-04
V3618	1	42412779	5.54E-06
V3621	1	42448177	2.23E-05
V3631	1	42522006	4.25E-05
V3632	1	42522020	6.02E-04
V3639	1	42591761	2.73E-04
V3652	1	42649531	5.12E-04
V3657	1	42695867	3.84E-03
V3659	1	42704583	4.23E-04
V3660	1	42709732	2.73E-04
V3661	1	42709765	2.13E-04
V4283	1	44680136	7.78E-03
V4322	1	44854051	2.25E-03
V4493	1	46145891	2.44E-03
V4103	1	46415138	3.55E-04
V4117	1	46448319	1.10E-03
V1163	1	46919213	1.28E-03
V4807	1	48586572	8.22E-04
V4605	1	48935415	4.10E-03
V1306	1	48980848	3.19E-03
V4674	1	49440979	9.29E-03
V4736	1	49992250	3.42E-04
V4737	1	49992264	2.15E-03
V4808	1	50540487	3.67E-05
V7568	2	310332	2.06E-05
V7591	2	522419	7.94E-04
V7682	2	1546167	1.02E-03
V7711	2	1951604	8.23E-04

V7733	2	2228026	3.51E-03
V7771	2	2667752	6.19E-03
V7772	2	2667766	5.41E-04
V7809	2	3390127	6.02E-03
V7848	2	4210645	7.96E-04
V8141	2	8227345	5.85E-03
V8142	2	8227346	4.49E-03
V8220	2	9179904	4.98E-03
V8271	2	9781605	1.41E-03
V8277	2	9803905	2.54E-03
V8278	2	9805963	8.43E-03
V8289	2	10266215	2.36E-03
V8294	2	10304755	6.84E-04
V8322	2	10520999	2.88E-04
V8328	2	10592278	6.44E-05
V8336	2	10842468	1.17E-03
V8349	2	11200423	8.46E-03
V8368	2	11368300	4.91E-03
V8370	2	11479801	3.70E-04
V8387	2	12054716	3.97E-03
V8389	2	12063855	3.90E-05
V8391	2	12120840	8.84E-04
V8419	2	12256903	3.83E-03
V8429	2	12318079	1.04E-05
V8430	2	12318082	8.76E-04
V8398	2	12412575	2.45E-04
V8405	2	12557508	7.98E-03
V8433	2	12943209	1.46E-04
V8489	2	14144922	5.97E-03
V8555	2	14503278	7.37E-03
V8514	2	14863253	5.62E-03
V8592	2	15122048	4.54E-03
V8593	2	15122115	7.68E-03
V8608	2	15199584	4.41E-07
V8609	2	15199593	8.79E-05
V8610	2	15202975	1.86E-05
V8611	2	15202976	9.93E-04
V8625	2	15347458	7.38E-04
V8631	2	15384134	6.10E-03
V8673	2	16168941	3.27E-03
V8676	2	16168977	4.40E-03
V8652	2	16214191	8.44E-03
V8664	2	16421319	1.13E-03
V8665	2	16421369	2.00E-03
V8668	2	16499208	2.11E-03
V8669	2	16499212	8.21E-03

V8677	2	16560250	2.71E-04
V8680	2	16571219	1.22E-03
V8687	2	16594128	1.67E-03
V8743	2	16907517	4.17E-04
V8744	2	16907560	2.86E-03
V8587	2	17847283	6.22E-03
V8977	2	20172274	9.11E-03
V8849	2	20202098	5.35E-03
V8868	2	20395684	4.45E-04
V8895	2	20806412	8.81E-03
V8896	2	20810259	2.36E-03
V8905	2	21060957	4.81E-04
V9011	2	21195891	3.55E-03
V995	2	27137519	8.60E-03
V354	2	27616187	3.45E-03
V9189	2	31083032	4.69E-03
V9295	2	33094940	2.62E-04
V9247	2	35730459	6.43E-03
V9252	2	35730541	7.83E-03
V1359	2	36791605	8.96E-04
V9387	2	51481880	1.06E-03
V147	2	53474348	4.14E-05
V1716	2	53584949	1.99E-03
V9551	2	56740972	7.14E-03
V1259	2	56933743	8.93E-04
V9634	2	57478470	3.77E-03
V1979	2	57757361	4.77E-05
V9697	2	58842880	7.61E-03
V9684	2	59202346	7.23E-04
V9666	2	59551188	2.48E-04
V9652	2	59888512	3.78E-03
V9802	2	60101536	9.05E-04
V9964	2	61762987	3.85E-03
V9932	2	62076582	9.04E-04
V10014	2	62786557	5.97E-04
V10155	2	64080402	1.44E-03
V10177	2	64504213	8.29E-04
V10178	2	64504222	5.61E-04
V9708	2	64561829	2.84E-03
V10011	2	68177619	9.11E-03
V10230	2	70274536	5.13E-03
V10231	2	70279929	9.65E-04
V10233	2	70279995	4.76E-03
V1360	3	3754775	9.75E-03
V958	3	7262349	2.30E-05
V959	3	7262380	1.90E-04

V961	3	7262421	1.97E-04
V1790	3	9517428	3.81E-03
V491	3	11695179	9.25E-04
V2036	3	15592880	6.36E-05
V2037	3	15592885	4.42E-05
V1507	3	22500714	2.64E-03
V1799	3	22511327	2.22E-04
V962	3	25515454	1.89E-03
V2928	3	28086198	1.59E-04
V170	3	28660032	5.92E-04
V82	3	34556827	5.12E-05
V83	3	34556844	1.88E-04
V2039	4	5335318	3.58E-03
V1729	4	10891858	5.51E-03
V1527	4	12805764	1.60E-03
V86	4	17395815	3.81E-03
V927	4	36103351	6.39E-05
V6691	4	38996008	3.76E-05
V1448	5	11165107	8.14E-03
V213	5	18861837	4.21E-05
V1395	5	24764563	1.83E-03
V1314	5	25578972	4.47E-05
V1315	5	25578998	5.61E-04
V2357	5	36230080	3.68E-03
V1405	5	37804264	3.58E-03
V1981	6	18199439	6.72E-03
V1983	6	18199494	5.59E-05
V6318	6	26364086	2.44E-03
V6319	6	26364122	8.98E-04
V1094	6	31352169	5.57E-03
V685	6	33780141	5.63E-04
V1505	6	34373031	3.34E-03
V7	6	38649604	9.60E-04
V1912	6	42343792	5.05E-04
V703	6	43593076	1.38E-03
V1340	6	44683598	6.38E-03
V10040	6	54040779	5.46E-03
V10038	6	54076570	2.56E-03
V2356	7	1229956	7.89E-03
V856	7	2564680	9.77E-03
V941	7	6028346	3.01E-03
V862	, 7	8007514	1.20E-03
V890	7	16431338	3.52E-03
V75	, 7	33706981	8.33E-05
V98	, 8	5120345	2.24E-03
V99	8	5120353	1.29E-03
	-		

V406	8	5542367	9.14E-03
V345	8	22264345	1.76E-04
V2028	9	4319534	5.42E-03
V9147	9	5169310	4.65E-04
V1583	9	5251763	8.20E-04
V1012	9	11619464	8.42E-04
V1411	9	26900826	8.03E-03
V1470	9	33200105	8.33E-03
V4918	10	2553024	6.76E-03
V4919	10	2553056	6.36E-03
V4920	10	2553077	3.15E-04
V4921	10	2594407	2.96E-04
V4922	10	2594411	8.57E-04
V5156	10	6590142	2.08E-03
V5184	10	7442209	6.16E-03
V5963	10	7460043	3.68E-04
V1944	10	10066121	3.84E-04
V5450	10	11872547	3.87E-03
V214	10	24056448	2.22E-04
V215	10	24056497	4.77E-04
V216	10	24056507	2.86E-05
V217	10	24056512	8.35E-03
V709	10	27791481	1.33E-03
V712	10	27791560	9.33E-03
V2931	10	30642093	3.90E-03
V5514	10	34808941	3.77E-04
V5361	10	36968487	2.90E-04
V5336	10	37712589	8.61E-03
V220	10	38001494	5.64E-03
V5699	10	40827076	3.88E-03
V5700	10	40827089	2.14E-03
V5564	10	42635791	3.17E-03
V1286	10	42738120	9.67E-03
V5809	10	44037441	4.26E-03
V5810	10	44037450	4.26E-03
V5811	10	44037473	3.02E-04
V5815	10	44150033	8.87E-05
V5816	10	44150035	5.16E-05
V5820	10	44183992	3.17E-04
V5824	10	44184019	6.84E-03
V5838	10	44457920	5.67E-03
V5877	10	44741658	1.98E-03
V6288	11	1860064	2.60E-05
V6289	11	1905439	1.14E-05
V6291	11	1905485	1.25E-03
V6306	11	2236120	2.55E-03

V6307	11	2236125	7.62E-04
V6308	11	2236136	2.37E-05
V6309	11	2236140	7.54E-03
V6038	11	4709133	2.50E-03
V1811	11	6804560	1.22E-03
V1812	11	6804638	7.05E-03
V772	11	7065738	5.12E-04
V6304	11	7623511	4.07E-04
V6305	11	7623569	1.50E-03
V6264	11	12674994	3.39E-04
V872	11	13432126	6.83E-04
V6215	11	22256731	7.74E-05
V6226	11	22385262	1.66E-03
V6477	11	23700363	1.94E-03
V6790	11	26648349	7.52E-03
V6791	11	26648392	7.04E-03
V6820	11	27900161	3.06E-03
V6880	11	28534901	1.52E-03
V6969	11	29381221	9.55E-05
V7006	11	29894818	6.13E-04
V7053	11	30452457	2.81E-03
V1074	11	30493159	5.59E-03
V7109	11	31449939	5.08E-04
V6549	11	31684338	7.57E-03
V6594	11	32213390	1.03E-05
V7191	11	32300796	2.46E-03
V6642	11	32681014	2.80E-03
V6690	11	33844511	1.36E-03
V6857	11	36152396	2.04E-03
V6886	11	36615617	6.55E-04
V6899	11	36768547	3.40E-05
V6900	11	36768563	3.14E-04
V6903	11	36768655	3.04E-05
V6927	11	36901542	8.16E-04
V7409	11	40608337	9.46E-03
V7438	11	41084720	2.43E-03
V7443	11	41135712	5.62E-06
V7444	11	41135773	1.42E-05
V7360	11	42289762	5.14E-03

C. arabica is an allotetraploid from *C. canephora* and *C. eugenioides* (Lashermes et al., 1999), so its genome is divided into two subgenomes, so the front of each SNP marker code is preceded by "c" and "e", referring to *C. canephora* and *C. eugenioides*, respectively, as can be seen in the table 4.

SNP	Chr	Position	Gene	Functional annotation	Trait
V2681_c	1	3925767	LOC113700785	Uncharacterized	Y
V773_c	1	8922851	LOC113712526	Cytochrome P450 81E8-like	Y
V2830_c	1	10231888	LOC113737716	Uncharacterized	Y
V510_e	1	11268905	LOC113700991	IRK-interacting protein-like	Y
V2935_e		14094952		Serine/threonine-protein	
	1		LOC113701199	kinase Nek6-like	Y
V3116_c	1	34314786	LOC113724086	protein GrpE-like	NRN
V3116_e		34314786		G2/mitotic-specific cyclin	
	1		LOC113703827	S13-7-like	NRN
V3117_c		34382600		phytochromobilin:ferredoxin	
				oxidoreductase,	
	1		LOC113739999	chloroplastic-like	NRN
V3117_e		34382600			
	1		LOC113703885	alcohol dehydrogenase-like 7	NRN
V1656_e		37086050		aluminum-activated malate	
	1		LOC113689416	transporter 2-like	Y
V1389_e		37493921		leucine-rich repeat-	
				containing protein ODA7-	
111000	I	27402076	LOC113/05580	like	Y
V1393_e		37493976		leucine-rich repeat-	
	1		1.0011270(0(2	containing protein ODA/-	V
V2524 -	I	20107201	LOC113/06063		Ŷ
v 3534_e	1	3819/381	1.00112706912	poly [ADP-ribose]	V
W2509	1	28072275	LUC113/00812	polymerase 5-like	I
v 5598_C		38972373		bydrogyginnemoyl	
	1		LOC113741358	transferase like	\mathbf{v}
V3598 e	1	38972375	LOC112707004	SDSE protoin kinggo 2 like	I V
V2625	1	30270256	LOC113707094	SKSF protein kinase 2-like	I
V 5055_C	I	39279230	LOC113/0/094	shugoshin-1-like	Ŷ
V3638_C	1	39283941	LOC112725576	indole-3-acetaldenyde	V
W2628	1	20282041	LOC113/233/0	oxidase-like	I
v 5058_e	I	39283941	LOC113695297	uncharacterized	Y
V3664_C	1	39458195	1.00112741525	receptor-like protein Cf-9	17
VOCA -	I	20459105	LOC113/41525	homolog	Ŷ
V3664_e	1	39458195	1.0011220222	ABC transporter F family	V
V2670 a	1	20517097	LOC113/0/2/2	APC transporter C family	Y
v 3070_e	1	39317087	LOC112707296	ABC trainsporter O failing	V
V3671 A	1	30517161	LUC113/0/200	ABC transporter C family	I
v 5071_C	1	57517101	I OC113707286	member 3	\mathbf{V}
V3674 A	1	39574545	LUC113/0/200	SNF1_related protein kinase	1
• 507 +_C	1	57577575	LOC113707345	regulatory subunit beta-3	V
V3379 e	1	40487725	LOC113/0/343	pentatricopentide repeat-	T
,0	1	10101120	LOC113708346	containing protein	Y
			200110/000/0	5 Protoni	-

Table 4: Functional annotation of SNP insert in genes for Number of Reproductive Nodes andYield.

				At2g27800, mitochondrial-	
V2460 a		40800016		like	
v 3409_C	1	40800010	LOC113726210	enzyme F2 variant 1C-like	Y
V3469 e	1	40800016	202113720210	probable protein phosphatase	1
	1	10000010	LOC113708681	2C 4	Y
V3904_e	1	41046162	LOC113708932	uncharacterized	Y
V3905_e	1	41046176	LOC113708932	uncharacterized	Y
V3488_e	1	41151580	LOC113709139	beta-Amyrin Synthase 2-like	Y
V3489_e	1	41151609	LOC113709139	beta-Amyrin Synthase 2-like	Y
V3526_c	1	41438835	LOC113725935	uncharacterized	Y
V3537_c		41565994		poly [ADP-ribose]	
	1		LOC113726673	polymerase 3-like	Y
V3537_e	1	41565994	LOC113709643	uncharacterized	Y
V3571_c	1	41913639	LOC113726852	uncharacterized	Y
V3578_c	1	42059867	LOC113726927	uncharacterized	Y
V3579_c	1	42059892	LOC113726927	uncharacterized	Y
V3585_c		42062620		hyoscyamine 6-dioxygenase-	
110505	1	100 (0 (0)	LOC113726938	like	Y
V3585_e		42062620		eukaryotic translation	
	1		LOC113710247	like	\mathbf{v}
V3605 c	1	42356201	LOC113/1024/	vacuolar protein sorting-	1
		12000201		associated protein 41	
	1		LOC113727118	homolog	Y
V3605_e		42356201		protein NRT1/ PTR	
	1		LOC113710693	FAMILY 8.2-like	Y
V3621_c	1	42448177	1 00112707154	cyclin-dependent kinases	V
V2621 a	1	12522006	LOC113727154	regulatory subunit 1	Y
V 3031_C	1	42522000	LOC113727246	probable aquaporin TIP1-1	Y
V 3032_C	1	42322020	LOC113727246	probable aquaporin TIP1-1	Y
V 3039_e	I	42391701	LOC113711001	villin-l-like	Y
v 3032_e	1	42049331	LOC113711078	exchanger 3-like	v
V3657 c	1	42695867	LOC113/110/0	4-coumarateCoA ligase-	1
	1		LOC113727337	like 7	Y
V3659_c	1	42704583	LOC113727343	uncharacterized	Y
V3659_e		42704583		protein O-glucosyltransferase	
	1		LOC113711170	1-like	Y
V4283_e	1	44680136	LOC113713753	uncharacterized	Y
V4322_e	1	44854051	LOC113714036	basic blue protein-like	Y
V4493_c		46145891		ERBB-3 BINDING	
V/4102	1	16115100	LOC113730695	PROTEIN 1-like	Y
v4103_c	1	40415138	LOC112720054	LUB domain-containing	\mathbf{v}
V4103 e	1	46415138	LUC113/29034	homocysteine S-	I
, TIUJ_U	1	10110100	LOC113716136	methyltransferase 2-like	Y
	-				-

V4117_c		46448319		malonyl CoA-acyl carrier	
	1		LOC113742966	protein transacylase	Y
V4807_e		48586572		ABC transporter B family	
	1		LOC113719062	member 11-like	Y
V4605_c		48935415		BSD domain-containing	
	1		LOC113733971	protein 1-like	Y
V1306_c		48980848		methyl-CpG-binding	
				domain-containing protein 4-	
	1		LOC113734013	like	Y
V4674_c	1	49440979	LOC113734653	cullin-1-like	Y
V4736_c		49992250		protein DEHYDRATION-	
				INDUCED 19 homolog 7-	
	1		LOC113735447	like	Y
V4737_c		49992264		protein DEHYDRATION- INDUCED 19 homolog 7-	
	1		LOC113735447	like	Y
V4808_c		50540487		dnaJ homolog subfamily B	
	1		LOC113736006	member 6-like	Y
V7568_e	2	310332	LOC113733380	protein EXPORTIN 1A-like	Y
V7591_c	2	522419	LOC113724807	UNC93-like protein 1	Y
V7682_c		1546167		probable WRKY	
	2		LOC113724913	transcription factor 41	Y
V7682_e		1546167		plastid division protein	
	2		LOC113729964	PDV1-like	Y
V7733_c	2	2228026	LOC113725012	uncharacterized	Y
V7733_e	2	2228026	LOC113730048	kinesin-like protein KIN-10C	Y
V7771_c		2667752		probable methyltransferase	
	2		LOC113725069	PMT15	Y
V7772_c	_	2667766		probable methyltransferase	
	2		LOC113725069	PMT15	Y
V7809_c	2	3390127	1 00112725152	BAG family molecular	v
V7040 a	2	4210645	LOC113725152	chaperone regulator /-like	Y
V / 848_C	2	4210645	LOC113725255	methylesterase 17	Y
v /848_e	2	4210645	I OC112720254	macro domain-containing	\mathbf{V}
V8141 o	Ζ	8777245	LOC113730234	protein v PA0103-like	ľ
V0141_C	2	8227343	I OC113730710	FEDONIA	\mathbf{v}
V8142 e	2	8227346	LOC113730710	receptor-like protein kinase	1
10112_0	2	0227510	LOC113730710	FERONIA	Y
V8220 e	-	9179904	200110/00/10	double-stranded RNA-	-
	2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	LOC113730801	binding protein 2-like	Y
V8271_c		9781605		transcription factor DYT1-	
	2		LOC113725874	like	Y
V8271_e	2	9781605	LOC113728538	uncharacterized	Y
V8277_e		9803905		G-type lectin S-receptor-like	
				serine/threonine-protein	
	2		LOC113730866	kinase At4g27290	Y

V8278_e		9803905		G-type lectin S-receptor-like	
				serine/threonine-protein	
	2		LOC113730866	kinase At4g27290	Y
V8277_c	2	9803905	LOC113725875	uncharacterized	Y
V8278_c		9805963		DAG protein, chloroplastic-	
	2		LOC113725876	like	Y
V8289_c		10266215		lysine-specific demethylase	
	2		LOC113725911	JMJ25-like	Y
V8289_e	2	10266215	LOC113730904	myosin-2-like	Y
V8294_c		10304755		transcription factor	
	2		LOC113725914	MYB102-like	Y
V8322_c		10520999		quinone oxidoreductase	
	2		LOC113725934	PIG3-like	Y
V8328_c		10592278		ATP-dependent RNA	
	2		LOC113725942	helicase A-like	Y
V8328_e	-	10592278		helicase-like transcription	
1100 10	2	11000 100	LOC113730930	factor CHR28	Y
V8349_c		11200423		pentatricopeptide repeat-	
	•		1 0 01 1 0 00 000	containing protein	T 7
110240	2	11200422	LOC113723900	At3g29230-like	Ŷ
V8349_e	2	11200423	LOC113730977	uncharacterized	Y
V8368_c		11368300		pentatricopeptide repeat-	
	•		1.0011070(010	containing protein	N 7
V0270	2	11470001	LOC113/26018	At2g33/60-like	Ŷ
V83/0_C	2	114/9801	1.00112722006	short-chain denydrogenase	v
V0207	2	12054716	LUCI13/23906	reductase 3D-like	Y V
V 838/_C	2	12034/16	LOC113/26081	uncharacterized	Ŷ
V8389_C	2	12063855	LOC113726082	glutaredoxin-C9-like	Y
V8419_e	•	12256903	1 0 01 1 0 0 1 0 0 0	protein CHUP1,	T 7
10410	2	1005(000	LOC113/31050	chloroplastic	Ŷ
V8419_c	2	12256903	LOC113726092	uncharacterized	Y
V8429_e	2	12318079	LOC113731056	uncharacterized	Y
V8430_e	2	12318082	LOC113731056	uncharacterized	Y
V8398_c		12412575		negative regulator of	
				systemic acquired resistance	
	2		LOC113726102	SNI1-like	Y
V8398_e		12412575		receptor kinase-like protein	
	2		LOC113728599	Xa21	Y
V8405_e	2	12557508	LOC113731072	uncharacterized	Y
V8433_c		12943209		probable LRR receptor-like	
				serine/threonine-protein	
	2		LOC113724380	kinase At3g47570	Y
V8433_e		12943209		receptor kinase-like protein	
	2		LOC113731096	Xa21	Y
V8489_c		14144922		probable LRR receptor-like	
	2		10011070(00)	serine/threonine-protein	X 7
VIOSES	2	14502070	LUC113/26226	KINASE KFKI	Ŷ
v 8555_e	2	14503278	LOC113731236	purple acid phosphatase 2	Y

V8514_c		14863253		peptidyl-prolyl cis-trans	
	2		LOC113726260	isomerase CYP21-1-like	Y
V8514_e		14863253		probable LRR receptor-like	
				serine/threonine-protein	
	2		LOC113731283	kinase At2g16250	Y
V8592_c		15122048		phosphatidylinositol/phospha	
				tidylcholine transfer protein	
	2		LOC113726287	SFH3-like	Y
V8593_c		15122115		phosphatidylinositol/phospha	
				tidylcholine transfer protein	
	2		LOC113726287	SFH3-like	Y
V8592_e		15122048		adenylate	
				isopentenyltransferase 5,	
	2		LOC113729561	chloroplastic-like	Y
V8593_e		15122115		adenylate	
				isopentenyltransferase 5,	
	2		LOC113729561	chloroplastic-like	Y
V8608_c		15199584		probable pinoresinol-	
	2		LOC113726299	lariciresinol reductase 3	Y
V8609_c		15199593		probable pinoresinol-	
	2		LOC113726299	lariciresinol reductase 3	Y
V8608_e		15199584		EEF1A lysine	
	2		LOC113731333	methyltransferase 4-like	Y
V8609_e		15199593		EEF1A lysine	
	2		LOC113731333	methyltransferase 4-like	Y
V8610_e		15202975		probable E3 ubiquitin-	
	2		LOC113731335	protein ligase ARI2	Y
V8611_e		15202976		probable E3 ubiquitin-	
	2		LOC113731335	protein ligase ARI2	Y
V8625_e		15347458		serine/threonine-protein	
	2		LOC113731354	kinase SMG1-like	Y
V8631_e		15384134		diphthamide biosynthesis	
	2		LOC113731363	protein 3-like	Y
V8631_e		15384134		diphthamide biosynthesis	
	2		LOC113731362	protein 3-like	Y
V8673_c		16168941		autophagy-related protein 2-	
	2		LOC113726423	like	Y
V8676_c		16168977		autophagy-related protein 2-	
	2		LOC113726423	like	Y
V8673_e		16168941		stress enhanced protein 1,	
	2		LOC113731461	chloroplastic-like	Y
V8676_e		16168977		stress enhanced protein 1,	
	2		LOC113731461	chloroplastic-like	Y
V8652_c	2	16214191	LOC113726426	protein CYPRO4-like	Y
V8652_e		16214191		cell division cycle protein	
	2		LOC113731468	123 homolog	Y
V8668_c		16499208		DNA-directed RNA	
				polymerases II, IV and V	
	2		LOC113726461	subunit 3-like	Y

V8669_c		16499212		DNA-directed RNA	
				polymerases II, IV and V	
	2		LOC113726461	subunit 3-like	Y
V8677_c		16560250		probable LRR receptor-like	
				serine/threonine-protein	
	2		LOC113726472	kinase At4g37250	Y
V8680_c		16571219		cell division cycle protein	
	2		LOC113726474	123 homolog	Y
V8680_e		16571219		ATP-dependent Clp protease	
				proteolytic subunit-related	
	2		LOC113731519	protein 1, chloroplastic	Y
V8687_c	_	16594128		cinnamyl alcohol	
	2		LOC113726478	dehydrogenase 1-like	Y
V8743_e	_	16907517		aspartatetRNA ligase,	
	2		LOC113731558	chloroplastic/mitochondrial	NRN
V8743_c		16907517		BTB/POZ domain-	
				containing protein NPY2-	
	2		LOC113726524	like	NRN
V8744_e	-	16907560		aspartatetRNA ligase,	
	2	1 (00 (0	LOC113731558	chloroplastic/mitochondrial	NRN
V87/44_c		16907560		BTB/POZ domain-	
	•		10011050(501	containing protein NPY2-	NIDNI
110505	2	100 40000	LOC113726524	like	NKN
V858/_e	2	1/84/283	1 00112721(52	phosphatidylinositol 4-kinase	37
N0507 -	2	17047000	LUC113/31053	alpha 1-like	Ŷ
V838/_C	2	1/84/283	LOC113726636	uncharacterized	Y
V8977_e	•	20172274	100110001000	ATP-dependent DNA	• 7
110077	2	00170074	LOC113/31882	helicase Q-like 4A	Ŷ
V89//_c	2	201/22/4	LOC113722748	uncharacterized	Y
V8849_e	2	20202098	LOC113731885	MLO-like protein 4	Y
V8868_c	2	20395684	LOC113725085	uncharacterized	Y
V8868_e	2	20395684	LOC113731911	uncharacterized	Y
V8895_e		20806412		DNA (cytosine-5)-	
	2		LOC113728771	methyltransferase 1B-like	Y
V8896_e		20810259		NADPH-dependent pterin	
	2		LOC113731952	aldehyde reductase	Y
V8905_e	2	21060957	LOC113731976	GTPase Der	NRN
V8905_c		21060957		nucleolar GTP-binding	
	2		LOC113726920	protein 1-like	YRN
V9011_c		21195891		NADH dehydrogenase	
				[ubiquinone] iron-sulfur	
	2		LOC113726937	protein 8, mitochondrial	Y
V354_c		27616187		subtilisin inhibitor CLSI-I-	
	2		LOC113723028	like	Y
V9189_c	2	31083032	LOC113727251	uncharacterized	Y
V9295_e	2	33094940	LOC113729006	cytochrome P450 87A3-like	Y
V147 e		53474348		probable	
_				pectinesterase/pectinesterase	
	2		LOC113729204	inhibitor 25	Y

V9634_c	2	57478470	LOC113727543	uncharacterized	Y
V9697_c		58842880		cation/calcium exchanger 5-	
	2		LOC113727596	like	Y
V9684_c	2	59202346	LOC113727613	cyclin-P3-1-like	Y
V9666_c		59551188		DNA polymerase zeta	
	2		LOC113727629	catalytic subunit-like	Y
V9652_c		59888512		heavy metal-associated	
				isoprenylated plant protein	
	2		LOC113727657	35-like	Y
V9802_c		60101536		dormancy-associated protein	
	2		LOC113727668	homolog 3-like	Y
V9964_e		61762987		protein FAR1-RELATED	
	2		LOC113729328	SEQUENCE 5-like	Y
V9932_c		62076582		psbP domain-containing	
	2		LOC113727828	protein 1, chloroplastic-like	Y
V10155		64080402			
	2		LOC113728002	F-box protein PP2-A13-like	Y
V10177	-	64504213		aspartic proteinase-like	
_e	2	(150 1000	LOC113732790	protein 2	Y
V10178	•	64504222		aspartic proteinase-like	
_e	2	(15(1000	LOC113/32/90	protein 2	Y
V9/08_e	•	64561829	10011000000	probable serine/threonine-	
110700	2	(15(1000	LOC113/32/94	protein kinase PBL/	Ŷ
V9/08_c	2	64561829	1.00112724(07	protein O-glucosyltransferase	NZ
V1200	2	2754775	LOC113/2469/	I-like	Ŷ
V1360_C	2	3/54//5	1 00112724210	putative ion channel	V
V1260	3	2751775	LOC113/34210	POLLUX-like 2	Y
v1500_e	3	5/54/75	LOC113/36199	uncharacterized	Y
V491_e	2	11695179	1.0011070(500	cellulose synthase-like	37
V2026	3	15502000	LUC113/36538	protein G3	Ŷ
v2036_e	2	15592880	1 001 12727440	eIF-2-alpha kinase GCN2-	NZ
V2027 -	3	15502995	LOC113/3/448	like	Ŷ
v2037_e	2	15592885	1 00112727449	eIF-2-aipna kinase GCN2-	V
V062 a	3	25515151	LOC113/3/448		I
v902_e	3	23313434	LOC113/36/34	calreticulin-3-like	Ŷ
V152/_c	4	12805764	LOC113740321	COBRA-like protein 2	Y
V927_e		36103351		DNA annealing helicase and	
11010	4	100(1005	LOC113741010	endonuclease ZRANB3-like	Y
V213_e		18861837		BTB/POZ domain-	
	~		1 0 01 1 0 0 1 0 0 5 5	containing protein	
11014	5	0.5.5.7.0.7.0	LOC113/43955	At5g48130-like	Ŷ
V1314_e	~	25578972	100110007004	cysteine-rich receptor-like	37
V1015	5	05570000	LOC11368/324	protein kinase 25	Ŷ
V1315_e	_	25578998	100112007224	cysteine-rich receptor-like	NZ
VODET	3	26220000	LUC11308/324	protein Kinase 25	Ŷ
v 235 /_C	5	30230080	LOC112600110	putative late blight resistance	V
V1405	5 2	27801761		protein nomolog RIC-3	Y T
v 1403_C	5	5/604204	LUC113688755	uncharacterized	Ŷ
v1981_e	6	18199439	LOC113697570	uncharacterized	Y

V1983_e	6	18199494	LOC113697570	uncharacterized	Y
V6318_c		26364086		pentatricopeptide repeat-	
				containing protein	
			10011000000	At3g18110, chloroplastic-	
11(210	6	26264122	LOC113693594	like	Y
V6319_c		26364122		pentatricopeptide repeat-	
				At2g18110 chloroplastic	
	6		I OC113603504	like	v
V10038	0	54076570	LOC115075574	like	1
c	6	51070570	LOC113692051	uncharacterized	Y
V856 c	-	2564680		probable UDP-	_
—	7		LOC113697895	arabinopyranose mutase 1	Y
V856_e	7	2564680	LOC113701139	protein SHORT-ROOT-like	Y
V941_c		6028346		LOB domain-containing	
_	7		LOC113698207	protein 41-like	Y
V941_e		6028346		probable metal-	
				nicotianamine transporter	
	7		LOC113701457	YSL7	Y
V890_c	7	16431338	LOC113697853	uncharacterized	Y
V890_c	7	16431338	LOC113697851	protein LAZY 1-like	Y
V75_c		33706981		CCR4-NOT transcription	
	7		LOC113699143	complex subunit 11-like	Y
V75_e	7	33706981	LOC113701244	F-box protein CPR1-like	Y
V1583_c		5251763		UDP-N-acetylglucosamine	
	9		LOC113708815	diphosphorylase 1-like	Y
V1411_e		26900826		phospho-N-acetylmuramoyl-	
				pentapeptide-transferase	
N 1 470	9	22200105	LOC113710463	homolog	Y
V14/0_c	9	33200105	LOC113707872	uncharacterized	Y
V4918_e		2553024		probable	
	10		1001127110(2	galacturonosyltransterase-	NZ
V4010 a	10	2552056	LUC113/11862	like l	Ŷ
V4919_e		2555050		probable	
	10		LOC113711862	like 1	v
V4920 e	10	2553077	LOC113711002	probable	1
1920_0		2333011		galacturonosyltransferase-	
	10		LOC113711862	like 1	Y
V4921 e	-	2594407		BEL1-like homeodomain	
_	10		LOC113712363	protein 4	Y
V4922_e		2594411		BEL1-like homeodomain	
	10		LOC113712363	protein 4	Y
V5156_e	10	6590142	LOC113711742	uncharacterized	Y
V5184_e		7442209		XIAP-associated factor 1-	
	10		LOC113710842	like	Y
V5963_c		7460043		putative 12-	
				oxophytodienoate reductase	
	10		LOC113714564	11	Y

V5963_e		7460043		probable	
	10		LOC113710944	rhamnogalacturonate lyase B	Y
V214_e		24056448		beta-1,3-	
	10		LOC113712412	galactosyltransferase 7-like	Y
V215_e	10	24056497	1 00112712412	beta-1,3-	v
V216	10	24056507	LOC113/12412	galactosyltransferase /-like	Ŷ
v210_e	10	24030307	LOC113712412	UCla-1,5- galactosyltransferase 7-like	\mathbf{v}
V217 e	10	24056512	LOC113/12412	beta-1.3-	1
, _1, _0	10	21000012	LOC113712412	galactosyltransferase 7-like	Y
V709_c		27791481		nitrate reductase [NADH]-	
	10		LOC113713621	like	Y
V712_c		27791560		nitrate reductase [NADH]-	
	10		LOC113713621	like	Y
V5514_e		34808941		signal recognition particle 43	
	10		1 00112712414	kDa protein, chloroplastic-	
V5514	10	24000041	LOC113/12414	like	Ŷ
v 5514_e	10	34808941	LOC113712415	replication factor C subunit 3	Y
v5361_e	10	30908487	LOC112712120	probable serine/threonine-	\mathbf{v}
V220 e	10	38001494	LOC115/12159	dehydration-responsive	I
v 220_C		50001474		element-binding protein 11-	
	10		LOC113712174	like	Y
V5699_c	10	40827076	LOC113713831	uncharacterized	Y
V5700_c	10	40827089	LOC113713831	uncharacterized	Y
V1286 c	10	42738120	200110710001	zinc finger CCCH domain-	-
_	10		LOC113714644	containing protein 55-like	Y
V5809_c		44037441		abscisic stress-ripening	
	10		LOC113714295	protein 5-like	Y
V5810_c		44037450		abscisic stress-ripening	
115011	10	44005450	LOC113714295	protein 5-like	Y
V5811_c	10	44037473	LOC112714205	abscisic stress-ripening	v
V5838 c	10	44457020	LUC113/14295	protein 5-like	Ĩ
v 3838_C	10	44437920	LOC113713825	related protein 4-like	V
V6038 c	11	4709133	LOC113717310	uncharacterized	v
V6304 e	11	7623511	LOC113717847	uncharacterized	v
V6305_e	11	7623569	LOC113717847	uncharacterized	v
V6264 c	11	12674994	LOC113/1/04/	serine/threonine-protein	1
0204_0		12074774		phosphatase 2A activator-	
	11		LOC113716958	like	Y
V6790_c		26648349		probable S-	
				adenosylmethionine-	
				dependent methyltransferase	
	11		LOC113716118	At5g38100	Y
V6791_c		26648392		probable S-	
				adenosylmethionine-	
	11		I OC112716110	$\Delta t = 28100$	v
	11		LUC113/10118	At5g38100	Ŷ

-	
11 LOC113719108 protein	n At1g58602 Y
V6791_e 26648392 probable di	isease resistance
11 LOC113719108 protein	n At1g58602 Y
V6820_c 27900161 probable in	nactive receptor
11 LOC113716177 kinase	At5g16590 Y
V6880_c 11 28534901 LOC113717158 uncha	aracterized Y
V6969_c 11 29381221 LOC113717020 uncha	aracterized Y
V7006_c 29894818 tryptophan	n synthase alpha
11 LOC113717235 ch	ain-like Y
V7053_c 30452457 putative late	e blight resistance
11 LOC113716220 protein ho	omolog R1A-10 Y
V7109_c 31449939 serotonin N-	-acetyltransferase
11 LOC113716538 2, ch	loroplastic Y
V6594_c 32213390 alpha-	-1,4 glucan
phosphoryla	ase L-2 isozyme,
chloroplast	cic/amyloplastic-
11 LOC113716326	like Y
V7191_c 32300796 pentatrico	peptide repeat-
contair	ning protein
At2g03380), mitochondrial-
11 LUC113/15681	ике ү
V6642_c 11 32681014 LOC113716244 myb-lik	e protein AA Y
V6690_c 11 33844511 LOC113717037 uncha	aracterized Y
V6886_e 36615617 probable su	alfate transporter
11 LOC113717766	3.3 Y
V6927_e 36901542 putative late	e blight resistance
11 LOC113/17916 protein ho	omolog R1B-16 Y
V/409_e 40608337 protein DEI	I OXIFICATION
11 LUC113/1895/ 2 W7429 - 41094720 E2	29-like Y
V/438_e 41084/20 E3 ubiquiti	In-protein ligase
V7442 = 11 41125712 LOC1127175(4 DELA	RP2-like I
$v/445_{C}$ II 41155/12 LOCI13/1/564 DELLA pi	rotein GAI-like Y
v/444_e 11 41135//3 LOC113717564 DELLA p	rotein GAI-like Y
V/360_e 11 42289762 LOC113719459 tran	saldolase Y

4 DISCUSSION

It is known that yield is a polygenic characteristic, thus, the study of dependencies between the characteristics that influence production at the level of molecular markers could be carried out, from the construction of a Bayesian Network, using the HC algorithm, which incorporates the four traits and finally being incorporated into a GWAS model based on SEM to decompose the SNP effects into direct and indirect on the trait.

Studies considering yield of *C. arabica* using GBLUP and ANOVA found low to medium heritability results, as seen in Sousa et al. (2019) and Weldemichael et al. (2017), who found a value of 0.26 and 0.28, respectively. Carvalho et al. (2019) considering the same method in *Coffea canephora* found 0.15, while in this study was found 0.14. For vegetative vigor, Sousa et al. (2019) found heritability of 0.34 and Carvalho et al. (2019) using GBLUP for canephora coffee found heritability of 0.23, while in this study, the heritability value was 0.39. For fruit size, in this study was found genomic heritability result of 0.61, while Sousa et al. (2019) obtained 0.36. For number of reproductive nodes in this study was found heritability result of 0.13, while Sousa et al. (2019) found 0.23. Thus, we can observe that the heritability values found are similar to those in the literature.

With the use of the Bayesian network together with SEM, it was possible to obtain coefficients of paths that interconnect important characteristics in Arabica coffee. It can be observed that there was a positive connection both directly ($VV \rightarrow Y$) and indirectly ($VV \rightarrow$ NNR $\rightarrow Y$) positive between VV and Y, thus indicating that the better the vegetative vigor status of the plant, the greater will be its production. Rodrigues et al. (2012), studying the influence of vegetative vigor on production, observed that it limits production. The opposite was observed when we analyzed the influence of NRN and FS on Y. Jaeggi et al. (2019) using path analysis, also has a negative relationship between NRN and Y. This relationship can be explained by the high drain for the development of many nodes, which leads to a reduction in the availability of nutrients for fruit formation.

Gene identification analysis based on information from the NCBI (2021) allowed detecting 189 SNP associated with the Yield, inserted in genes (Table 4). There were occurrences of markers allocated to the same gene on several chromosomes, as seen in the table 4. Their functional annotation and gene can be seen in same table. SNP that were not located within genes are also relevant for use as genetic markers in breeding. Molecular marker does not necessarily need to be inserted in a gene to detect genetic differences between individuals, it can be associated with the gene and be efficient (Andersen & Lubberstedt, 2013).

Furthermore, the SNP may be in promoter or regulatory regions, and therefore involved in gene expression.

According to the functional annotation of the genes in which the SNP are inserted, no mechanism was identified that has a direct influence on NRN control, however, for Y it was possible to identify some genes that have a direct influence on its control, such as the genes: i) LOC113731461_e - Stress enhanced protein 1, chloroplastic; ii) LOC113714295_c - Abscisic stress-ripening protein 5; iii) LOC113726102_c - Negative regulator of systemic acquired resistance SNI1. De acordo com Heddad & Adamska (1999), estudando *Arabdopsis thaliana*, the stress enhanced protein 1, chloroplastic pode desempenhar um papel fotoprotetor na membrana tilacóide em resposta ao estresse luminoso. Li et al, (2017), in rice studies, identified the involvement of Abscisic stress-ripening protein 5 in drought tolerance, playing a positive role in response to water stress, regulating Abscisic Acid (ABA) biosynthesis, promoting stomatal closure and acting as a protein similar to chaperone that possibly prevents the inactivation of proteins related to water stress. Durrant et al., (2007), identified a negative reduction in gene expression and DNA recombination during a susceptible pathogen infection, therefore, involved in a short-term defense response and a long-term supply strategy.

5 CONCLUSION

With this study, it was possible to extend the study of the genome association study using several characters, adding a Bayesian network structure, and thus quantifying the genetic interrelationships between important characteristics of arabica coffee, so that it was possible to estimate the genetics direct and indirect effects and then understand the genetic architecture formed. Thus, we identified a positive interrelationship between vegetative vigor in production and vegetative vigor for the number of reproductive nodes and negative for the number of reproductive nodes and size of the fruit for production. It was also possible to detect significant genomic regions, and thus identify three genes that act directly on production.

6 REFERENCES

ABIC, Tendências do mercado de cafés em 2017. https://www.abic.com.br/wp-content/uploads/2020/01/2017.pdf

Brenner, E. A., Beavis, W. D., Andersen, J. R., Lübberstedt, T. 2013. Prospects and limitations for development and application of functional markers in plants. Diagnostics in Plant Breeding, p. 329-346.

Carvalho, H.F., Silva, F.L.D., Resende, M.D.V.D., Bhering, L.L. 2019. Selection and genetic parameters for interpopulation hybrids between kouilou and robusta coffee. Bragantia, 78, p. 52-59.

Cilas, C., Bar-Hen, A., Montagnon, C., Godin, C. 2006. Definition of architectural ideotypes for good yield capacity in Coffea canephora. Annals of Botany, 97(3), pp.405-411.

CONAB - ACOMPANHAMENTO DA SAFRA BRASILEIRA DE CAFÉ. Primeiro levantamento, janeiro de 2020. v. 6 - Safra 2020, n. 1.

DCCC. 2019. Coffee market China is growing larger–coffee consumption and imports China. https://www.dccchina.org/2019/09/coffee-market-china-is-growing-larger-coffee-consumption-imports-opportunities-in-china/

Durrant W.E., Wang S., Dong X. 2007. Arabidopsis SNI1 and RAD51D regulate both gene transcription and DNA recombination during the defense response. Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):4223-7. doi: 10.1073/pnas.0609357104. Epub 2007 Feb 21. Erratum in: Proc Natl Acad Sci U S A. 104(17), p. 7307.

Ferrão, R. G.; Fonseca, A. F. A. Da.; Ferrão, M. A. G.; Verdin Filho, A. C.; Volpi, P. S.; De Muner. L. H.; Lani, J. A.; Prezotti, L. C.; Ventura, J. A.; Martins, D. Dos S.; Mauri, A. L.; Marques, E. M. G.; Zucateli, F. Café Conilon: Técnicas de Producion com variedades mejoradas. 2012. 4 ed. Revisada y actualizada, Vitória, ES: Incaper, 74p. (Circular Técnica, 03-I).

Ferrão, R.G., de Muner, L.H., da Fonseca, A.F.A., Ferrão, M.A.G. 2016. Café Conilon. Vitória, ES: Incaper, 2017.

Heddad, M., Adamska, I. 2000. Light stress-regulated two-helix proteins in Arabidopsis thaliana related to the chlorophyll a/b-binding gene family. Proceedings of the National Academy of Sciences, 97(7), p. 3741-3746.

Ikegawa, S. 2012. A short history of the genome-wide association study: where we were and where we are going. Genomics & informatics, 10(4), p. 220.

Jaeggi, M.E.P.C., Coelho, F.C., Pereira, I.M., Zacarias, A.J., de Amaral Gravina, G., de Lima, W.L., Pereira, L.L., Moreira, T.R., da Silva, S.F., do Carmo Parajara, M. 2019. Path analysis of vegetative characteristics in conilon coffee production consortiated with green fertilizers in tropical climate. Journal of Experimental Agriculture International, p. 1-11.

Jiang, G., Chakraborty, A., Wang, Z., Boustani, M., Liu, Y., Skaar, T., Li, L. 2013. New aQTL SNPs for the CYP2D6 identified by a novel mediation analysis of genome-wide SNP arrays, gene expression arrays, and CYP2D6 activity. BioMed research international, 2013.

Korb, K.B., Nicholson, A.E. 2010. Bayesian artificial intelligence. CRC press.

Korte, A., Vilhjálmsson, B.J., Segura, V., Platt, A., Long, Q., Nordborg, M. 2012. A mixedmodel approach for genome-wide association studies of correlated traits in structured populations. Nature genetics, 44(9), p. 1066-1071.

Lashermes, P., Combes, M. C., Robert, J., Trouslot, P., D'Hont, A., Anthony, F., Charrier, A. 1999. Molecular characterisation and origin of the Coffea arabica L. genome. Molecular and General Genetics MGG, 261(2), p. 259-266.

Li J., Li Y., Yin Z., Jiang J., Zhang M., Guo X., Ye Z., Zhao Y., Xiong H., Zhang Z., Shao Y., Jiang C., Zhang H., An G., Paek N.C., Ali J., Li Z. 20167 OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2 O2 signalling in rice. Plant Biotechnol J. 15(2), p. 183-196.

Li, Y., Huang, Y., Bergelson, J., Nordborg, M., Borevitz, J.O. 2010. Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 107(49), p. 21199-21204.

Meuwissen, T.H., Hayes, B.J., Goddard, M.E. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), p. 1819-1829.

Meyer, K. 2007. WOMBAT—A tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). Journal of Zhejiang University Science B, 8(11), p. 815-821.

Meyer, K., Tier, B. 2012. "SNP Snappy": a strategy for fast genome-wide association studies fitting a full mixed model. Genetics, 190(1), p. 275-277.

Mi, X., Eskridge, K., Wang, D., Baenziger, P.S., Campbell, B.T., Gill, K.S., Dweikat, I. 2010. Bayesian mixture structural equation modelling in multiple-trait QTL mapping. Genetics research, 92(3), p. 239-250.

Momen, M., Ayatollahi Mehrgardi, A., Amiri Roudbar, M., Kranis, A., Mercuri Pinto, R., Valente, B.D., Morota, G., Rosa, G.J., Gianola, D. 2018. Including phenotypic causal networks in genome-wide association studies using mixed effects structural equation models. Frontiers in genetics, 9, p. 455.

Momen, M., Campbell, M.T., Walia, H., Morota, G. 2019. Utilizing trait networks and structural equation models as tools to interpret multi-trait genome-wide association studies. Plant methods, 15(1), p. 1-14.

Momen, M., Campbell, M.T., Walia, H., Morota, G. 2019. Harnessing phenotypic networks and structural equation models to improve genome-wide association analysis. bioRxiv, p.553008.

O'Reilly, P.F., Hoggart, C.J., Pomyen, Y., Calboli, F.C., Elliott, P., Jarvelin, M.R. and Coin, L.J., 2012. MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS. PloS one, 7(5), p. e34861.

Rodrigues, M.N., Ferrao, R.G., Fonseca, A.F.A., Mendonca, R.L., Martins, L.D. and Tomaz, M.A., 2012. Crop yield of conilon coffee plants of different levels of vegetative vigor and rust severity. Nucleus, 9(2), p. 1-6.

Sant'Anna, G.C., Pereira, L.F., Pot, D., Ivamoto, S.T., Domingues, D.S., Ferreira, R.V., Pagiatto, N.F., da Silva, B.S., Nogueira, L.M., Kitzberger, C.S., Scholz, M.B., 2018. Genome-wide association study reveals candidate genes influencing lipids and diterpenes contents in Coffea arabica L. Scientific reports, 8(1), p. 1-12.

Scutari, M. 2009. Learning Bayesian networks with the bnlearn R package. arXiv preprint arXiv:0908.3817.

Sousa, T.V., Caixeta, E.T., Alkimim, E.R., Oliveira, A.C.B., Pereira, A.A., Sakiyama, N.S., Zambolim, L., Resende, M.D.V. 2019. Early selection enabled by the implementation of genomic selection in Coffea arabica breeding. Frontiers in plant science, 9, p. 1934.

Tran, H.T., Furtado, A., Vargas, C.A.C., Smyth, H., Lee, L.S., Henry, R. 2018. SNP in the Coffea arabica genome associated with coffee quality. Tree Genetics & Genomes, 14(5), p. 1-15.

USDA. 2021. Coffee: World Markets and Trade. https://apps.fas.usda.gov/psdonline/circulars/coffee.pdf

Valente B.D., Rosa G.J., Gianola D., Wu X-L, Weigel K.A. 2013. Is structural equation modeling advantageous for the genetic improvement of multiple traits?. Genetics, 194(3), p. 561–572.

VanRaden, P.M., 2008. Efficient methods to compute genomic predictions. Journal of dairy science, 91(11), pp.4414-4423.

Weldemichael, G., Alamerew, S., Kufa, T. 2017. Genetic variability, heritability and genetic advance for quantitative traits in coffee (Coffea arabica L.) accessions in Ethiopia. African Journal of Agricultural Research, 12(21), pp.1824-1831.

Zhou, X., Stephens, M. 2012. Genome-wide efficient mixed-model analysis for association studies. Nature genetics, 44(7), p.821.

7 ATTACHMENTS

SF1: Manhattan plots with enlargement for SNP effects on Yield obtained using SEM-GWAS based on the network structure learned by Hill Climbing algorithm. VV: vegetative vigor; Y: Yield.

SF2: Manhattan plots with enlargement for SNP effects on Yield obtained using SEM-GWAS based on the network structure learned by Hill Climbing algorithm. NRN: number of reproductive nodes; Y: Yield.

SF3: Manhattan plots with enlargement for SNP effects on Yield obtained using SEM-GWAS based on the network structure learned by Hill Climbing algorithm. VV: vegetative vigor; NRN: number of reproductive nodes; Y: Yield.

SF4: Manhattan plots with enlargement for SNP effects on Yield obtained using SEM-GWAS based on the network structure learned by Hill Climbing algorithm. FS: fruit size; Y: Yield.

SF5: Manhattan plots with enlargement for SNP effects on number of reproductive nodes obtained using SEM-GWAS based on the network structure learned by Hill Climbing algorithm. VV: vegetative vigor; NRN: number of reproductive nodes.

Convergence analysis

#niter=1.2M; burnin=50k; thin=50
R

LAGS AND AUTOCORRELATIONS:

Chain: R

Lag 1 Lag 5 Lag 10 Lag 50 V1 0.04149533 0.0235427939 -0.006817042 0.0033779687 V2 0.02961728 0.0063482279 -0.007710827 0.0117975961 V3 0.03231226 0.0145107318 -0.004858921 -0.0016827318 V4 0.09297639 0.0273947132 -0.006736830 -0.0092522235 V5 0.01762976 0.0110801337 -0.005240808 0.0076986133 V6 0.03700064 0.0205398452 0.008732112 0.0116028048 V7 0.05790439 0.0006186543 -0.012360439 0.0044281055 V8 0.03237568 -0.0009093089 -0.005749035 -0.0006198499 V9 0.06379039 0.0023251174 -0.013951965 -0.0093901876 V10 0.13238355 0.0119532470 0.001860423 -0.0076808849

GEWEKE CONVERGENCE DIAGNOSTIC:

Fraction in first window = 0.1Fraction in last window = 0.5

Chain: R

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Z-Score -1.1294541 0.5574693 0.8888514 -0.2998819 2.3666849 2.13349019 0.1313820 -0.3700722 -0.7448091 0.817195 p-value 0.2587063 0.5772068 0.3740830 0.7642673 0.0179482 0.03288454 0.8954731 0.7113287 0.4563871 0.413817

RAFTERY AND LEWIS CONVERGENCE DIAGNOSTIC:

Quantile = 0.025 Accuracy = +/- 0.005 Probability = 0.95

Chain: R

Thin Burn-in Total Lower Bound Dependence Factor

V1	1	2 3945	3746	1.053123
V2	1	2 3685	3746	0.983716
V3	1	2 3918	3746	1.045916
V4	1	3 4083	3746	1.089963
V5	1	2 3761	3746	1.004004
V6	1	1 3747	3746	1.000267
V7	1	2 3813	3746	1.017886
V8	1	2 3787	3746	1.010945
V9	1	2 3839	3746	1.024826
V10	1	3 4126	3746	1.101442

G

LAGS AND AUTOCORRELATIONS:

Chain: G

Lag 1 Lag 5 Lag 10 Lag 50 V1 0.50239132 0.077037131 0.0071986248 -0.0179243518 V2 0.28350716 0.002370659 -0.0137969840 -0.0026106310 V3 0.25079798 0.006981694 0.0006316473 0.0096776876 V4 0.49937999 0.056537403 0.0122162507 -0.0064765711 V5 0.08125254 -0.007490150 -0.0010329143 -0.0107218453 V6 0.10319785 0.009822392 -0.0043233122 -0.0018757567 V7 0.19415597 0.008209455 -0.0043513509 -0.0043207583 V8 0.08347748 0.009255031 -0.0051651627 0.0008708542 V9 0.18075899 -0.006594235 0.0005265323 0.0035707331 V10 0.30557140 0.006918642 0.0091229355 0.0015180381

GEWEKE CONVERGENCE DIAGNOSTIC:

Fraction in first window = 0.1Fraction in last window = 0.5

Chain: G

V9 V1 V2 V3 V4 V5 V6 V7 V8 Z-Score 0.2529986 0.2349770 0.02624938 0.2208149 -1.78450922 -1.1372147 1.73556554 -0.4125141 1.6217126 p-value 0.8002693 0.8142266 0.97905843 0.8252366 0.07434096 0.2554485 0.08264068 0.6799627 0.1048649 V10 Z-Score -0.2016144

p-value 0.8402182

RAFTERY AND LEWIS CONVERGENCE DIAGNOSTIC:

Quantile = 0.025Accuracy = +/-0.005Probability = 0.95

Chain: G

Thin Burn-in Total Lower Bound Dependence Factor

V1	1	3 4434	3746	1.183663
V2	1	4 4638	3746	1.238121
V3	1	3 4306	3746	1.149493
V4	1	4 4719	3746	1.259744
V5	1	2 3905	3746	1.042445
V6	1	2 3774	3746	1.007475
V7	1	2 3972	3746	1.060331
V8	1	2 3865	3746	1.031767
V9	1	3 4028	3746	1.075280
V10	1	3 4403	3746	1.175387

SF6: Correlation plots of decomposed SNP effects for NRN. Each point corresponds to the estimated effect of a SNP which direct affects NRN.

SF7: Correlation plots of decomposed SNP effects for NRN. Each point corresponds to the estimated effect of a SNP which indirect affects NRN.

SF8: Correlation plots of decomposed SNP effects for Y. Each point corresponds to the estimated effect of a SNP which direct affects Y.

SF9: Correlation plots of decomposed SNP effects for Y. Each point corresponds to the estimated effect of a SNP which indirect affects Y.

SF10: Correlation plots of decomposed SNP effects for Y. Each point corresponds to the estimated effect of a SNP which indirect affects Y.

SF11: Correlation plots of decomposed SNP effects for Y. Each point corresponds to the estimated effect of a SNP which indirect affects Y.

SF12: Correlation plots of decomposed SNP effects for Y. Each point corresponds to the estimated effect of a SNP which indirect affects Y.