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RESUMO 

 

SUELA, Matheus Massariol, M.Sc., Universidade Federal de Viçosa, julho de 2021. 
Structural equation models for genome-wide association study in Coffea arabica. 
Orientador: Moysés Nascimento. Coorientadores: Camila Ferreira Azevedo, Eveline Teixeira 
Caixeta e Gota Morota. 

 

O melhoramento em café foi baseado em técnicas clássicas por muito tempo, porém, com o 

advento de técnicas genômicas e de fenotipagem de precisão, os programas de melhoramento 

vêm apresentando melhores resultados e mais velozes, mesmo com os programas se tornando 

cada vez mais complexos, em termos de quantidades e tipos de características estudadas. Dessa 

forma, a existência de interrelações entre caracteres podem gerar impactos importantes em um 

programa de melhoramento, como por exemplo, na descoberta de regiões genômicas que 

contribuem para determinadas características. Especificamente, tais características podem atuar 

tanto de forma direta quanto indireta na característica em estudo. Sabendo disso, compreender 

os efeitos diretos e indiretos que um caráter exerce em outro, é de grande importância para a 

fase de seleção. Tradicionalmente, para realizar o estudo das associações entre características, 

técnicas multivariadas são aplicadas, porém, são tais metodologias negligenciam as inter-

relações entre as mesmas. Dessa forma, a utilização da Rede Bayesiana (BN) em conjunto com 

Modelo de Equações Estruturadas (SEM) sob o enfoque do estudo de associação genômica 

ampla (GWAS), permite quantificar o efeito dos marcadores, particionando seus valores em 

efeitos diretos e indiretos para as características presentes na rede formada. Com o objetivo de 

explorar estas inter-relações, foram analisados fenótipos relacionados às características 

morfológicas (tamanho do fruto, número de nós reprodutivos), fisiológicas (vigor vegetativo) e 

produtivas (produção) em 195 genótipos de Coffea arabica, provenientes de uma parceria entre 

a Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), Empresa Brasileira de 

Pesquisa Agropecuária (EMBRAPA) e Universidade Federal de Viçosa (UFV). A rede 

fenotípica inferida por meio do algoritmo Hill Climbing foi usada para estimar os coeficientes 

estruturais. Realizando uma integração entre modelos multivariados - GWAS e SEM-GWAS 

foi possível identificar inter-relação positiva entre vigor vegetativo em produção e de vigor 

vegetativo pra número de nós reprodutivos e negativo de número de nós reprodutivos e tamanho 

do fruto para produção. Também foi possível detectar regiões genômicas significativas, e assim, 

identificar três genes que atuam diretamente sobre produção. 
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ABSTRACT 

 

SUELA, Matheus Massariol, M.Sc., Universidade Federal de Viçosa, July, 2021. Structural 

equation models for genome-wide association study in Coffea arabica. Adviser: Moysés 
Nascimento. Co-advisers: Camila Ferreira Azevedo, Eveline Teixeira Caixeta and Gota 
Morota. 

 

Coffee breeding techniques were based on classical techniques for a long time, however, with 

the advent of genomic techniques and precision phenotyping, breeding programs have been 

showing best and faster results, even with the programs becoming more complex, in terms of 

quantities and types of characteristics studied. Thus, the existence of interrelationships between 

characters can generate important impacts in a breeding program, such as the discovery of 

genomic regions that contribute to certain characteristics, these can act directly, or indirectly. 

Knowing this, understanding the direct and indirect effects that one character has on another is 

of great importance for the selection phase. Traditionally, multivariate techniques are applied, 

but phenotypic interrelationships are neglected. Thus, the use of the Bayesian Network (BN) in 

conjunction with the Structured Equation Model (SEM) under the focus of the genomic wide 

association study (GWAS), allows quantifying genetic parameters, partitioning such values into 

direct and indirect effects for the traits. present in the formed network. In order to explore these 

interrelationships, they were able to phenotypes related to morphological (fruit size and number 

of reproductive nodes), physiological (vegetative vigor) and productive (production) 

characteristics in 195 Coffea arabica genotypes from a partnership between Empresa de 

Pesquisa Agropecuária de Minas Gerais (EPAMIG), Empresa Brasileira de Pesquisa 

Agropecuária (EMBRAPA) and Federal University of Viçosa (UFV). The phenotypic network 

inferred by means of the Hill Climbing algorithm was used to estimate the appropriate 

coefficients. By performing an integration between multivariate models - GWAS and SEM-

GWAS it was possible to identify a positive interrelationship between vegetative vigor in yield 

and vegetative vigor for the number of reproductive nodes and negative for the number of 

reproductive nodes and fruit size for yield. It was also possible to detect significant genomic 

regions, and thus identify three genes that act directly on yield. 

 

Keywords: Coffea arabica. Bayesian Network. Structural Equation Models. GWAS. 
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GENERAL INTRODUCTION 

Coffee is the second most important commodity in international trade, after crude oil 

(MISHRA, 2019), and has a very large impact in several countries in Asia, Africa and Latin 

America, both in economic and social terms. The total world production in the 2020/21 harvest 

is equivalent to approximately 10.5 million tons processed (USDA, 2021). Brazil is the world 

is largest producer and exporter of coffee (arabica and conilon), with a total of approximately 

3.8 million tons of processed coffee produced in the 2020/21 harvest, according to data from 

the Companhia Nacional de Abastecimento (CONAB, 2021). This production comes from 

approximately 2.2 million hectares, being disposed in around 277.3 thousand hectares in the 

formation phase and around 1.89 million hectares in the production phase (CONAB, 2021). Of 

the total produced in the 2020/21 harvest, approximately 77.3% comes from arabica coffee, the 

other 22.7% comes from conilon coffee. 

The genus Coffea belongs to the Rubiaceae family and consists of more than 125 species 

(DAVIS, 2011; DAVIS et al. 2006; RAZAFINARIVO et al. 2013). However, commercially, 

there are two species that stand out, the arabica coffee (Coffea arabica) and the conilon coffee 

(Coffea canephora). According to Ferrão et al. (2017) and Carvalho (1946) the species C. 

canephora differs from C. arabica in several agronomic characteristics, which from the 

viewpoint of genetic improvement are very important, namely: i) it has a multi-stemmed shrub; 

ii) larger leaves, well wavy, with a lighter green coloration; iii) self-incompatible flowers; iv) 

fruits a little more spherical, smaller, with red, yellow and orange color when ripe and thinner 

exocarp; v) seeds of variable size, with a well-adhering silvery skin, green endosperm and 

higher caffeine content. When it comes to the genome, C. arabica is a tetraploid plant (2n = 4X 

= 44), while C. canephora is a diploid (2n = 2X = 22). 

According to (MISHRA, 2019), the genetic improvement programs for coffee, initially 

with Arabica and only from the 1950s onwards with conilon, initially aimed at increasing 

productivity and resistance to rust, only from 1990 onwards than others characteristics, such as 

beverage quality, pest and drought resistance gained notoriety. This start was made using 

conventional breeding techniques, but this became a major bottleneck, as from the selection of 

parents, through hybridization until finally reaching the progeny evaluations, approximately 30 

years are required to develop a new cultivar, in addition to which becomes quite an expensive 

process. Thus, several strategies had to be implemented for the gains to be greater. One of the 

applied strategies was the genomic association, which consists in the application of 
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methodologies in order to detect significant markers for certain characteristics of interest. This 

technique allows the quantification of the effects of markers on the evaluated trait, but currently, 

breeding programs have been using several traits at once, since certain traits can positively, 

negatively or not affect one another. Thus, this work proposes a new way of using GWAS 

(Genome-Wide Association Study) in morphological, pest and productive characteristics of 

Arabica coffee, using Bayesian Networks (BN) and Structured Equation Models (SEM), 

partition the effect of the marker into direct and indirect, allowing the analysis of the direct and 

indirect impact on the target trait compared to several others and also identify significant 

markers that represent a candidate gene. 
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Structural Equation Models for Genome-Wide Association Study in Coffea arabica 
 

ABSTRACT  

Yield is one of the most important characteristics for arabica coffee, however, it is affected by 

several other characteristics, even so, plant breeders search for to maximize this characteristic 

directly and/or indirectly, using characteristics that are often correlated. Thus, structural 

equation modeling (SEM) - GWAS was applied in order to explore interrelated dependencies 

between phenotypes related to morphology (fruit size, number of reproductive nodes), 

physiology (vegetative vigor) and productive (yield) characteristics in 195 Coffea arabica 

genotypes from a partnership between Empresa de Pesquisa Agropecuária de Minas Gerais 

(EPAMIG), Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) and Universidade 

Federal de Viçosa (UFV). The phenotypic network inferred by means of the Hill Climbing 

algorithm was used to estimate the appropriate coefficients. By performing an integration 

between multivariate models - GWAS and SEM-GWAS it was possible to identify a positive 

interrelationship between vegetative vigor in production and vegetative vigor for the number of 

reproductive nodes and negative for the number of reproductive nodes and size of the fruit for 

production. It was also possible to detect significant genomic regions, and thus identify three 

genes that act directly on yield. 

 

 

 

 

 

 

 

 



13 

 

 

 

1 INTRODUCTION 

Coffee is one of the most widely consumed beverages worldwide, with Brazil being the 

world’s largest producer. Of all the coffee produced in the world (Coffea canephora and Coffea 

arabica), Brazil produces 39.76%, if we consider only Arabica coffee, the target of our study, 

this number already rises to 48.68% (USDA, 2021).  

Due to the increase in coffee consumption in countries that were not as traditional, such 

as China (Nam, Z., 2014; DCCC, 2019), it is necessary to promote research that contributes to 

greater productivity and sustainability of production chain. In this context, genetic breeding is 

one of those responsible for promoting such advances in the midst of the development of 

cultures that meet the demands of the market (Oliveira et al., 2010; Carvalho et al., 2011; Barka 

et al., 2017). However, the improvement process takes time, since this culture has a long cycle, 

high size and a long juvenile period (Ferrão et al., 2017). Thus, it is recommended to apply 

innovative tools, such as the use of biotechnology, which can contribute to the genetic progress 

of the culture (Mishra and Slater, 2012; Ferrão et al., 2015). 

Among these methodologies, genome-wide association studies (GWAS) have become 

increasingly popular for the elucidation of the genetic architecture of economically important 

traits (Momen et al., 2019). In coffee, GWAS have been successful in identifying regions on 

genome associated with a important of phenotypes, as example, yield, abiotic and biotic 

stresses, and plant morphological traits (Sant’ Ana et al., 2018; Tran et al., 2018). 

In breeding programs, correlated traits are recorded on the same material and the 

association mapping is performed independently for each trait. This approach can fail to study 

the genetic interdependence among traits and impose limitations on elucidating the genetic 

mechanisms underlying a complex system of traits (Momen et al., 2019). To circumvent this 

issue, the multi-trait GWAS (MTM-GWAS) was proposed. According to Zhou and Stephens 

(2012), Korte et al., (2012), O’reilly et al., (2012) and Momen et al. (2018) this approach 

reduces false positives and increases the statistical power of association tests in GWAS. 

Although MTM-GWAS is a valuable approach, this methodology does not  inform how the 

traits are interrelated, that is does not provide information about causal relationships.  

Momen et al. (2018) proposed to use Structural equation modeling for association studies 

(SEM-GWAS). According with these authors, compared to MTM-GWAS, the SEM-GWAS 

approach captures complex relationships and delivers a more comprehensive understanding of 

single nucleotide polymorphism (SNP) effects. Specifically, it can partition the total SNP 
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effects acting on a trait into direct and indirect effects enhancing our understanding of complex 

relationships among agronomic traits.  

In a coffee breeding program context, some traits have an important impact on the culture. 

Among than, the Yield (Y), Vegetative Vigor (VV), Fruit Size (FS) and Number of 

Reproductive Nodes (NRN) deserves attention. According to Cilas et al. (2006) individuals who 

have larger amounts of NRN tend to have higher productions. According Ferrão et al., 2012, 

the FS is one of the main trait used to select production. The VV which shows your growth 

potential. Finally, the main trait in a breeding program is Yield (Y), which is, extremely 

impacted by several other characteristics at once. 

In this context, we aimed to (1) estimate genetic parameters for phenological traits in 

the Coffea arabica; and (2) to enhance the understanding of the genetic architecture of these 

traits using SEM-GWAS approach. 
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2 MATERIAL AND METHODS 

2.1 Phenotypic and Genotypic Data 

The phenotypic and genotypic data comes from the C. arabica breeding program of the 

partnership between EPAMIG, UFV and EMBRAPA. An experimental area is maintained at 

the Department of Phytopathology – UFV (lat. 20°44′25" S, long. 42°50′52" W). This database 

contains 13 progenies from crosses between three parents of the Catuaí cultivar and three 

parents of the Hybrid of Timor (HdT), built in relation to coffee rust (Hemileia vastatrix). 

Fifteen genotypes were selected from each progenies mentioned above, totaling 195 

individuals, which were genotyped for 21,211 SNP markers. 

The genotypes were planted on February 11, 2011, using the spacing of 3.0 meters between 

rows and 0.7 meters between plants. Nutritional management was carried out following the 

requirements of the crop. More details can be seen in Sousa et al. (2019). 

The phenotypic database used comprised four traits, which are: Yield (Y), Vegetative Vigor 

(VV), Number of Reproductive Nodes (NRN) and Fruit Size (FS). There was correction of the 

phenotypes for the effect of years, plots and years x plots interaction. The analyzes were 

performed considering the mixed linear models (REML/BLUP procedure), using the Selegen-

REML/BLUP software (Resende, 2016b), using the following statistical model:  𝐲 = 𝐗𝐮 + 𝐙𝐠 + 𝐖𝐩 + 𝐕𝐫 + 𝐓𝐛 + 𝐑𝐢 + 𝐞,                                                 (1) 

Where, 𝐲 is the vector of data, 𝐮 is the vector of general average in each year of evaluation, 𝐠 

is the vector of progeny effects, 𝐩 is the vector of permanent variance between individuals, 𝐫 is 

the vector of variance between types of populations, 𝐛 is the vector of variance between plots, 𝐢 is the vector of variance of the progenies x years interaction and 𝐞 vector of residuals. 𝐙, 𝐖, 𝐕, 𝐓 and 𝐑 is incidence matrix. 

Quality analyzes were carried out with the parameters CR (Call Rate) and MAF (Minor 

Allele Frequency) equal to or greater than 90% and 5%, respectively, totaling 20,477 SNP 

markers. 

 

2.2 Bayesian multi-trait genomic best linear unbiased prediction 

The Bayesian multi-trait genomic best linear unbiased prediction (BMT-GBLUP) model 

used can be described as follows: 
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𝐲 =  𝐗𝐛 +  𝐙𝐠 +  𝐞,                                                 (2) 

where, 𝐲 is the vector of phenotypes (Y, VV, FS and NRN) (t = 4), X is the t x k incidence 

matrix of non-genetic effects; 𝐛 is the k ×  1 vector of the non-genetic effects; 𝐙 is the n ×  m 

incidence matrix relating accessions with additive genomic effects; 𝐠 is the m ×  1 vector of 

additive genomic effects, and e is the t ×  1 vector of residuals; and 𝐞 is the t ×  1  vector of 

residuals. The 𝐠 and e vectors were assumed to follow the independent multivariate Gaussian 

distributions 𝐠 ∼  𝐍(𝟎, 𝚺𝒈 ⊗ 𝐆)  and 𝐞 ∼  𝐍(𝟎, 𝚺𝒆 ⊗ 𝐈), respectively, where 𝐆 is the 

genomic relationship matrix for genetic efects, 𝐈 is the identity matrix for residuals, 𝚺𝒈 and 𝚺𝒆 

are the (t ×  t) variance-covariance matrices of genetic effects and residuals, respectively. Here, ⊗ indicates the Kronecker product. The 𝐆 matrix was computed as 𝐖𝐖′/ 𝟐 ∑ 𝒑𝒋(𝟏 −𝐦𝐧=𝟏 𝒑𝒋) 

, where 𝐖 is an n ×  m matrix of centered SNP genotypes having values of 0 − 2𝑝𝑗 for zero 

copies of the reference allele, 1 − 2𝑝𝑗  for one copy of the reference allele, and 2 − 2𝑝𝑗  for 

two copies of the reference allele (VanRaden, 2008). Here, 𝑝𝑗  corresponds to the allele 

frequency at SNP j =  1, … , 𝑚. Flat priors were assigned to the intercepts and to the vector of 

fixed effects. Independent multivariate normal priors with null mean and inverse Wishart 

distributions, with hyperparameters ν and 𝑆, where ν is a scalar degrees of freedom and 𝑆 is a 

positive-semi-defined symmetric matrix, for covariances matrices were assigned to the vectors 

of random additive genomic effects and residual effects.  

Marginal posterior densities were obtained using a Markov Chain Monte Carlo (MCMC) 

approach with Gibbs sampling algorithm. Was used 1,200,000 MCMC samples with a burn-in 

of 50,000. The MCMC samples were thin interval equal to 50, resulting in 23,000 MCMC 

samples for inference. The posterior means of genetic values were used as inputs for inferring 

a trait network. 

 

2.3 Bayesian networks 

Bayesian networks describe conditional independence relationships between multivariate 

phenotypes (Korb & Nicholson, 2011). In this structure there are nodes, which would be the 

phenotypes, and the edges that connect the phenotypes if they are directly affected, the absence 

of an edge implies conditional independence between variables. The algorithm based on Hill 

Climbing (HC) scores was used, implemented in the R bnlearn package (Scutari, 2010) to infer 

the structure of the residual phenotypic Bayesian network for four (Y, VV, FS and NRN) 
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economic traits of coffee. Was computed the Bayesian information criterion (BIC) score afer 

each edge removal in the algorithm to infer their relative contribution to the overall BIC score 

of the network and estimated the strength and uncertainty of direction of each edge 

probabilistically by bootstrapping (n = 50,000 bootstraping samples). An edge strength ≥ 80% 

was used to select only high-confidence relationships. 

 

2.4 Multi‑trait MTM-GWAS 

MTM-GWAS analyzes were performed using the SNP Snappy strategy (Meyer & Tier, 

2012) implemented in the mixed model package WOMBAT (Meyer, 2007), according to the 

following model, which did not consider the inferred network structure: 𝐲 = 𝐖𝐬 +  𝑿𝒃  + 𝒁𝒈  +  𝐞,                                                   (3) 

where 𝐲 is the vector of phenotypes (𝑡 = 5), 𝐖 is the n x t by 𝑡 matrix of genotype codes of 

SNP marker j, 𝐬 is the t ×  1 vector of direct effects for SNP marker j, and other terms were 

previously described. Variance-covariance structures were assumed the same as for Eq. (1). 

Was ftted MTM-GWAS for each SNP individually was fitted to obtain the following vector of 

marker estimates for each trait: 𝐬 =  [𝐬𝐘, 𝐬𝐕𝐕, 𝐬𝐅𝐒, 𝐬𝐍𝐑𝐍]. A t statistic was used to obtain P-

values: 𝐓𝐢𝐣  =  𝐬𝐣/𝐬𝐞(𝐬𝐣) , where s is the point estimate of the 𝑗th SNP direct effect and se(𝑠𝑗) 

is its standard error. The 𝑞-values were obtained by correcting the 𝑃-values for bonferroni 

protection with a significance level of 0.01. 

 

2.5 Structural equations model – GWAS 

The structured equation model manages to relate the network to the various phenotypes 

involving recursive effects. The use of SEM-GWAS was conducted using the SNP Snappy 

Strategy (Meyer & Tier, 2012) implemented in the mixed model package WOMBAT (Meyer, 

2007). The SEM model described in Gianola and Sorensen was extended to GWAS according 

to Momen et al. (2018) and Momen et al. (2019). 𝐲 =  𝚲𝐲 +  𝐖𝐬 +  𝐙𝐠 +  𝛜,                                                   (4) 
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where 𝒚 is the vector of phenotypes (t = 4), and 𝚲 is a t ×  t matrix of regression 

coefficients (structural coefficients) based on the learned structure from the Bayesian network 

using the residuals: 

𝚲 =  [0000     I2 λVV→Y00I2 λVV→NRN     I3 λFS→Y000      I3 λNRN→Y000 ] 

The vectors 𝐠 and 𝐞 were assumed to have a joint distribution [𝒈𝒆] = 𝑵 {[00] , [𝚺𝐠⨂ 𝐆 00 𝛙]}, 

and the residual covariance matrix was diagonal, with:  

ψ = [σ²e(Y)000      0σ²e(VV)00      00σ²e(FS)0      000σ²e(NNR)]. 

 

 All analyzes followed a routine that can be seen in figure 1. 

 

Figure 1: Flowchart detailing the analysis procedure. 

The structural coefficients represented the size of the edge effect between phenotypes in 

the Bayesian network, so that the direct and indirect effects of the SNP effect could be 

compensated. While MTM-GWAS uses the effect of SNP as a direct effect, SEM considers it 

to be the direct effect of SNP, the indirect effects for the same SNP are obtained by those 

mediated by up-stream traits in the phenotypic network. The calculation of indirect effects 
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based on the multiplication of path coefficients for each path linking the SNP to an associated 

variable and then adding all these paths Mi  et al. (2010) and Jiang et al. (2013). Thus, the 

general effect of the SNP is the sum of the direct and indirect effects sought for an analyzed 

characteristic. 

The knowledge of direct and indirect effects is of great importance for the selection phase 

in breeding programs, whether plants or animals, which according to Valente et al. (2013) it is 

not possible using just MTM-GWAS. Thus, was used the results obtained with this 

methodology so that we could select markers that reflected significant effects on the 

characteristics under study. 

3 RESULTS 

 

3.1 Phenotypic correlations and Bayesian network structure 

Descriptive statistics for the traits investigated are reported in Table 1. Average values 

were 5.19 liter/plant (4.76, 5.59) for Y, 7.35 (2.07, 7.47) for VV, 2.32 (1.99, 2.37) for FS, and 

8.62 (7.19, 8.89) for NRN. Values in parentheses show lower and upper bounds of the highest 

95% probability density regions (HPD95) obtained from the estimated marginal densities are 

given in parantheses 

Genomic, residual correlations and heritability estimates obtained with a multi-trait 

Bayesian GBLUP model are reported in Table 1. No genomic correlation was obtained. Among 

residual correlations, we found relevant positive correlations between FS and Y (0.30) and 

between NRN and Y (0.38). Heritability estimates were moderate for VV (0.39) and FS (0.61), 

and low for Y (0.14) and NRN (0.13). 

 

Table 1: Genomic (upper triangular) and residual (lower triangular) correlations, and genomic 

heritabilities (diagonals) for the coffee traits and their respective HPD (in parenthesis). 

 Y VV FS  NRN 

Y 0.14 (0.01,0.33) 0.44 (-0.64,0.92) -0.32 (-0.81,0.51)  0.57 (-0.49,0.98) 

VV 0.47 (-0.23,0.58) 0.39 (0.13,0.66) -0.30 (-0.72,0.64)  0.40 (-0.67,0.90) 

FS 0.30 (0.03,0.45) -0.01 (-0.17,0.28) 0.61 (0.33,0.79)  -0.25 (-0.79,0.49) 

NRN 0.38 (0.27,0.59) 0.40 (-0.25,0.53) 0.19 (-0.17,0.35)  0.13 (0.01,0.56) 

Y: yield; VV: vegetative vigor; FS: fruit size; NRN: number of reproductive nodes. 
Relevant correlations (HPD95 not including 0) are highlighted in bold. 
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Bayesian network structure learning algorithms were applied to the residual plus 

breeding value vector of the Bayesian GBLUP analysis to identify dependencies between 

phenotypes. The results obtained with the HC algorithm are showed in the Figure 2.  

Direction values represent the probability of the arc pointing to a particular node, and 

strength values represent  

In this network, we found a direct dependence from VV to NRN (68% of bootstrap 

samples and 100% of strength), NRN to Y (100% of bootstrap samples and 81% of strength), 

VV to Y (100 % of bootstrap samples and 99% of strength) and FS to Y (100% of bootstrap 

samples and 82% of strength). The indirect path between VV and Y was mediated by the NRN.  

The greatest decrease in BIC was observed when removing the VV → NRN arcs, 

suggesting that this path may play the most important role in the network (Table 2). 

 

 

Figure 2: Network structure inferred from the vector of the residuals using the Hill-Climbing 

(HC) algorithm. Network structure inferred combining the results obtained with HC algorithm. 

Structure learning test was performed with 50,000 bootstrap samples. The percentages reported 

beside the edges indicate the proportion of the bootstrap samples supporting the edge and (in 

parentheses) the proportion having the direction shown. 

 

Table 2: Bayesian Information Criterion (BIC) score for the Hill Climbing (HC) algorithm and 

path coefficients derived from the structural equation models. 

BIC (a) Path BIC (b) Path coefficient (𝝀) 
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-1395.29 VV → NRN -15.19 0.0351 

 VV → Y -15.09 0.0047 

 NRN → Y -2.37 -0.0438 

 FS → Y -2.54 -0.0338 
(a) Bayesian information criterion score (BIC) for the entire network. 
(b) BIC scores for pairs of nodes; the change in the score when removing the arc 

relative to the entire network score is showed. 
Y: yield; VV: vegetative vigor; FS: fruit size; NRN: number of reproductive nodes  
 

3.2 Structural equation coefficients 

Using the Bayesian network technique, it was possible to model the interrelationships 

between the four characteristics (Y, VV, NRN and FS), which enabled the construction of the 

DAG (Direct Acyclic Graphic), as can be seen in Figure 2. Using the SEM technique, it was 

possible to estimate the structural coefficients for each path, which enabled the estimation of 

the SNP effects. Table 2 shows the estimates of the structural coefficients. The coefficients of 

the NRN → Y and FS → Y paths were negative, while VV → NRN and VV → Y were positive. 

The coefficient referring to the NRN → Y path had the highest value, while VV → Y had the 

lowest coefficient. 

 

 

Figure 3: Figure for path analysis of SNP effects for four coffee-related traits. Y: yield; NRN: 
number of reproductive nodes; FS: fruit size; VV: vegetative vigor. The gray  dashed arrows 
indicate the direction of relationship according to the learned causal structure. 𝜆24: VV → NRN; 
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𝜆21: VV → Y; 𝜆41: NRN → Y; 𝜆31: FS → Y. The black arrows correspond to the direct effect 
of SNPj on the trait. 

 

3.3 Partitioning of SNP effects 

Using SEM-GWAS, it was possible to partition the effects of SNP into direct and one 

or more indirect effects. Manhattan plots for decomposition of the SNP effect are shown in 

Figs. 4-7. 

 

3.3.1 Yield 𝜆24: VV → NNR; 𝜆21: VV → Y; 𝜆41: NNR → Y; 𝜆31: FS → Y 

Overall SNP effects for Y could be partitioned into one direct effect and four indirect 

effects (Fig. 1): (1) VV → Y, (2) NRN → Y, (3) FS → Y and (4) VV → NRN → Y. VV, NRN 

and FS influenced Y through an indirect path with structural coefficient 𝜆21 (0.0047), 𝜆41 (-

0.0438) and 𝜆31 (-0.0338). VV also indirectly contributed to NRN, which in turn affected Y, 

represented by the product of the coefficients 𝜆24 x 𝜆41 (0.0351 x -0.0438 = -0.0015). The 

contribution can be seen in Fig. 4. 

 𝐷𝑖𝑟𝑒𝑐𝑡𝑠𝑗→𝑦1𝑌 = 𝑠𝑗(𝑦1𝑌) 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡(1)𝑠𝑗→𝑦1𝑌 = 𝜆21𝑠𝑗(𝑦2𝑉𝑉) 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡(2)𝑠𝑗→𝑦1𝑌 = 𝜆41𝑠𝑗(𝑦4𝑁𝑅𝑁) 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡(3)𝑠𝑗→𝑦1𝑌 = 𝜆31𝑠𝑗(𝑦3𝐹𝑆) 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡(4)𝑠𝑗→𝑦1𝑌 = 𝜆21𝜆41𝑠𝑗(𝑦2𝑉𝑉) 𝑇𝑜𝑡𝑎𝑙𝑠𝑗→𝑦1𝑌 = 𝐷𝑖𝑟𝑒𝑐𝑡𝑠𝑗→𝑦1𝑌 + 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡(1)𝑠𝑗→𝑦1𝑌 + 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡(2)𝑠𝑗→𝑦1𝑌+ 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡(3)𝑠𝑗→𝑦1𝑌 + 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡(4)𝑠𝑗→𝑦1𝑌= 𝑠𝑗(𝑦1𝑌) + 𝜆21𝑠𝑗(𝑦2𝑉𝑉) + 𝜆41𝑠𝑗(𝑦4𝑁𝑅𝑁) + 𝜆31𝑠𝑗(𝑦3𝐹𝑆) + 𝜆24𝜆41𝑠𝑗(𝑦2𝑉𝑉) 
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Figure 4: Manhattan plots for SNP effects on yield obtained using SEM-GWAS based on the 
network structure learned by Hill Climbing algorithm. VV: vegetative vigor; NRN: number of 
reproductive nodes; Y: yield 
 

3.3.2 Vegetative Vigor 

In the case of VV, the Bayesian network algorithm did not identify any mediator trait 

(Fig. 1). Therefore, the genomic architecture of VV was seemingly controlled only by direct 

SNP effects, i.e., the total effect of the jth SNP on VV corresponds to its own direct effect (Fig. 

5). 

 𝐷𝑖𝑟𝑒𝑐𝑡𝑠𝑗→𝑦2𝑉𝑉 = 𝑠𝑗(𝑦2𝑉𝑉) 𝑇𝑜𝑡𝑎𝑙𝑠𝑗→𝑦2𝑉𝑉 = 𝐷𝑖𝑟𝑒𝑐𝑡𝑠𝑗(𝑦2𝑉𝑉) = 𝑠𝑗(𝑦2𝑉𝑉) 
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Figure 5: Manhattan plots for SNP effects on number of reproductive nodes obtained using 
SEM-GWAS based on the network structure learned by Hill Climbing algorithm. VV: 
vegetative vigor. 
 

3.3.3  Fruit Size 

In the case of FS, the Bayesian network algorithm did not identify mediator trait (Fig. 

1). Therefore, the genomic architecture of FS was seemingly controlled only by direct SNP 

effects, i.e., the total effect of the jth SNP on FS corresponds to its own direct effect (Fig. 6). 

 𝐷𝑖𝑟𝑒𝑐𝑡𝑠𝑗→𝑦3𝐹𝑆 = 𝑠𝑗(𝑦3𝐹𝑆) 𝑇𝑜𝑡𝑎𝑙𝑠𝑗→𝑦3𝐹𝑆 = 𝐷𝑖𝑟𝑒𝑐𝑡𝑠𝑗(𝑦3𝐹𝑆) = 𝑠𝑗(𝑦3𝐹𝑆) 
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Figure 6: Manhattan plots for SNP effects on fruit size obtained using SEM-GWAS based on 
the network structure learned by Hill Climbing algorithm. FS: fruit size. 
 

3.3.4 Number of Rproductive Nodes 

The overall SNP effect on NRN was decomposed into one direct effect and one indirect 

effect mediated by VV (VV → NRN) with a structural coefficient 𝜆24  (0.0351). The 

contribution to SNP effects on NRN mediated by VV (Fig. 7). 𝐷𝑖𝑟𝑒𝑐𝑡𝑠𝑗→𝑦4𝑁𝑅𝑁 = 𝑠𝑗(𝑦4𝑁𝑅𝑁) 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡(1)𝑠𝑗→𝑦4𝑁𝑅𝑁 = 𝜆24𝑠𝑗(𝑦2𝑉𝑉) 
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𝑇𝑜𝑡𝑎𝑙𝑠𝑗→𝑦1𝑌 = 𝐷𝑖𝑟𝑒𝑐𝑡𝑠𝑗→𝑦4𝑁𝑅𝑁 + 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡(1)𝑠𝑗→𝑦4𝑁𝑅𝑁 = 𝑠𝑗(𝑦4𝑁𝑅𝑁) + 𝜆24𝑠𝑗(𝑦2𝑉𝑉) 

 
Figure 7: Manhattan plots for SNP effects on number of reproductive nodes obtained using 
SEM-GWAS based on the network structure learned by Hill Climbing algorithm. VV: 
vegetative vigor; NRN: number of reproductive nodes. 
 

Was compared the direct and indirect SNP effects with the total SNP effects for NRN and 

Y. Direct SNP effects were positively highly correlated (𝑅2 > 0.98) with total SNP effects for 

all traits. For the indirect SNP effects with total SNP effects were positively correlated for VV 

→ NNR (0.02) and VV → Y (0.03), and negatively correlated for NRN → Y (0.72), FS → Y 

(0.14) and VV → NNR → Y (0.03), as seen in the attachments. 
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3.4 Genome-Wide Association Study for Yield, Vegetative Vigor, Fruit Size and 
Number of Reproductive Nodes 

Two hundred and ninety-seven SNP were statistically significant, however, seven are 

allocated in the Unchr (Uncharacterizad chromosome), the Unchr is constituted by a set of 

scaffolds with disordered sequences, according to information found in this region not 

discussed in this work. Thus, 290 significant SNP were obtained, where five are related to the 

NRN characteristic and two hundred and eighty-five to the Y characteristic (q < 0.01) (Table 

3). These SNP are distributed on chromosomes 1 (Chr 1) to 11 (Chr 11) (Figure 4 to 7). 

 

Table 3: SNP with significant associations (q<0.01), chromosome and position associated with 

Y, VV, FS and NRN. 

SNP Chr Position q-value 

V5938 Unchr 177 4.80E-03 
V3683 Unchr 4424 7.36E-04 
V1324 Unchr 14706 1.07E-03 
V2880 Unchr 24645 2.61E-03 
V887 Unchr 402268 2.70E-03 
V888 Unchr 402295 4.07E-05 

V1309 Unchr 453050 9.09E-03 
V2681 1 3925767 1.87E-03 
V2102 1 8299841 7.02E-04 
V773 1 8922851 4.05E-04 

V1101 1 9651201 3.79E-03 
V2830 1 10231888 3.76E-04 
V510 1 11268905 5.82E-03 

V2856 1 12667165 9.96E-05 
V2857 1 12667184 3.29E-05 
V2861 1 12874767 1.10E-03 
V2935 1 14094952 9.59E-03 
V2032 1 33500866 2.88E-04 
V3116 1 34314786 9.53E-03 
V3117 1 34382600 9.69E-03 
V3244 1 36669403 2.47E-04 
V1656 1 37086050 2.95E-05 
V1389 1 37493921 3.50E-04 
V1393 1 37493976 7.27E-04 
V3534 1 38197381 4.86E-03 
V3598 1 38972375 4.04E-03 
V3635 1 39279256 9.00E-03 
V3638 1 39283941 4.10E-04 
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V3664 1 39458195 3.79E-03 
V3670 1 39517087 2.32E-06 
V3671 1 39517161 7.83E-05 
V3674 1 39574545 3.80E-05 
V3379 1 40487725 2.48E-03 
V3469 1 40800016 8.12E-03 
V3904 1 41046162 8.79E-03 
V3905 1 41046176 4.11E-03 
V3488 1 41151580 5.20E-03 
V3489 1 41151609 4.09E-03 
V3526 1 41438835 7.42E-03 
V3537 1 41565994 3.65E-04 
V3563 1 41875031 5.61E-04 
V3571 1 41913639 2.90E-05 
V3578 1 42059867 2.72E-03 
V3579 1 42059892 1.84E-04 
V3585 1 42062620 3.01E-04 
V3589 1 42094959 2.10E-05 
V3605 1 42356201 1.85E-04 
V3618 1 42412779 5.54E-06 
V3621 1 42448177 2.23E-05 
V3631 1 42522006 4.25E-05 
V3632 1 42522020 6.02E-04 
V3639 1 42591761 2.73E-04 
V3652 1 42649531 5.12E-04 
V3657 1 42695867 3.84E-03 
V3659 1 42704583 4.23E-04 

V3660 1 42709732 2.73E-04 

V3661 1 42709765 2.13E-04 
V4283 1 44680136 7.78E-03 
V4322 1 44854051 2.25E-03 
V4493 1 46145891 2.44E-03 

V4103 1 46415138 3.55E-04 

V4117 1 46448319 1.10E-03 
V1163 1 46919213 1.28E-03 
V4807 1 48586572 8.22E-04 
V4605 1 48935415 4.10E-03 
V1306 1 48980848 3.19E-03 
V4674 1 49440979 9.29E-03 
V4736 1 49992250 3.42E-04 
V4737 1  49992264 2.15E-03 
V4808 1 50540487 3.67E-05 
V7568 2 310332 2.06E-05 
V7591 2 522419 7.94E-04 
V7682 2 1546167 1.02E-03 
V7711 2 1951604 8.23E-04 
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V7733 2 2228026 3.51E-03 
V7771 2 2667752 6.19E-03 
V7772 2 2667766 5.41E-04 
V7809 2 3390127 6.02E-03 
V7848 2 4210645 7.96E-04 
V8141 2 8227345 5.85E-03 
V8142 2 8227346 4.49E-03 
V8220 2 9179904 4.98E-03 
V8271 2 9781605 1.41E-03 
V8277 2 9803905 2.54E-03 
V8278 2 9805963 8.43E-03 
V8289 2 10266215 2.36E-03 
V8294 2 10304755 6.84E-04 
V8322 2 10520999 2.88E-04 
V8328 2 10592278 6.44E-05 
V8336 2 10842468 1.17E-03 
V8349 2 11200423 8.46E-03 
V8368 2 11368300 4.91E-03 
V8370 2 11479801 3.70E-04 
V8387 2 12054716 3.97E-03 
V8389 2 12063855 3.90E-05 
V8391 2 12120840 8.84E-04 
V8419 2 12256903 3.83E-03 
V8429 2 12318079 1.04E-05 
V8430 2 12318082 8.76E-04 
V8398 2 12412575 2.45E-04 
V8405 2 12557508 7.98E-03 
V8433 2 12943209 1.46E-04 
V8489 2 14144922 5.97E-03 
V8555 2 14503278 7.37E-03 
V8514 2 14863253 5.62E-03 
V8592 2 15122048 4.54E-03 
V8593 2 15122115 7.68E-03 
V8608 2 15199584 4.41E-07 
V8609 2 15199593 8.79E-05 
V8610 2 15202975 1.86E-05 
V8611 2 15202976 9.93E-04 
V8625 2 15347458 7.38E-04 
V8631 2 15384134 6.10E-03 
V8673 2 16168941 3.27E-03 
V8676 2 16168977 4.40E-03 
V8652 2 16214191 8.44E-03 
V8664 2 16421319 1.13E-03 
V8665 2 16421369 2.00E-03 
V8668 2 16499208 2.11E-03 
V8669 2 16499212 8.21E-03 
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V8677 2 16560250 2.71E-04 
V8680 2 16571219 1.22E-03 
V8687 2 16594128 1.67E-03 
V8743 2 16907517 4.17E-04 
V8744 2 16907560 2.86E-03 
V8587 2 17847283 6.22E-03 
V8977 2 20172274 9.11E-03 
V8849 2 20202098 5.35E-03 
V8868 2 20395684 4.45E-04 
V8895 2 20806412 8.81E-03 
V8896 2 20810259 2.36E-03 
V8905 2 21060957 4.81E-04 
V9011 2 21195891 3.55E-03 
V995 2 27137519 8.60E-03 
V354 2 27616187 3.45E-03 

V9189 2 31083032 4.69E-03 
V9295 2 33094940 2.62E-04 
V9247 2 35730459 6.43E-03 
V9252 2 35730541 7.83E-03 
V1359 2 36791605 8.96E-04 
V9387 2 51481880 1.06E-03 
V147 2 53474348 4.14E-05 

V1716 2 53584949 1.99E-03 
V9551 2 56740972 7.14E-03 
V1259 2 56933743 8.93E-04 
V9634 2 57478470 3.77E-03 
V1979 2 57757361 4.77E-05 
V9697 2 58842880 7.61E-03 
V9684 2 59202346 7.23E-04 
V9666 2 59551188 2.48E-04 
V9652 2 59888512 3.78E-03 
V9802 2 60101536 9.05E-04 
V9964 2 61762987 3.85E-03 
V9932 2 62076582 9.04E-04 
V10014 2 62786557 5.97E-04 
V10155 2 64080402 1.44E-03 
V10177 2 64504213 8.29E-04 
V10178 2 64504222 5.61E-04 
V9708 2 64561829 2.84E-03 
V10011 2 68177619 9.11E-03 
V10230 2 70274536 5.13E-03 
V10231 2 70279929 9.65E-04 
V10233 2 70279995 4.76E-03 
V1360 3 3754775 9.75E-03 
V958 3 7262349 2.30E-05 
V959 3 7262380 1.90E-04 
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V961 3 7262421 1.97E-04 
V1790 3 9517428 3.81E-03 
V491 3 11695179 9.25E-04 

V2036 3 15592880 6.36E-05 
V2037 3 15592885 4.42E-05 
V1507 3 22500714 2.64E-03 
V1799 3 22511327 2.22E-04 
V962 3 25515454 1.89E-03 

V2928 3 28086198 1.59E-04 
V170 3 28660032 5.92E-04 
V82 3 34556827 5.12E-05 
V83 3 34556844 1.88E-04 

V2039 4 5335318 3.58E-03 
V1729 4 10891858 5.51E-03 
V1527 4 12805764 1.60E-03 
V86 4 17395815 3.81E-03 
V927 4 36103351 6.39E-05 

V6691 4 38996008 3.76E-05 
V1448 5 11165107 8.14E-03 
V213 5 18861837 4.21E-05 

V1395 5 24764563 1.83E-03 
V1314 5 25578972 4.47E-05 
V1315 5 25578998 5.61E-04 
V2357 5 36230080 3.68E-03 
V1405 5 37804264 3.58E-03 
V1981 6 18199439 6.72E-03 
V1983 6 18199494 5.59E-05 
V6318 6 26364086 2.44E-03 
V6319 6 26364122 8.98E-04 
V1094 6 31352169 5.57E-03 
V685 6 33780141 5.63E-04 

V1505 6 34373031 3.34E-03 
V7 6 38649604 9.60E-04 

V1912 6 42343792 5.05E-04 
V703 6 43593076 1.38E-03 

V1340 6 44683598 6.38E-03 
V10040 6 54040779 5.46E-03 
V10038 6 54076570 2.56E-03 
V2356 7 1229956 7.89E-03 
V856 7 2564680 9.77E-03 
V941 7 6028346 3.01E-03 
V862 7 8007514 1.20E-03 
V890 7 16431338 3.52E-03 
V75 7 33706981 8.33E-05 
V98 8 5120345 2.24E-03 
V99 8 5120353 1.29E-03 
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V406 8 5542367 9.14E-03 
V345 8 22264345 1.76E-04 

V2028 9 4319534 5.42E-03 
V9147 9 5169310 4.65E-04 
V1583 9 5251763 8.20E-04 
V1012 9 11619464 8.42E-04 
V1411 9 26900826 8.03E-03 
V1470 9 33200105 8.33E-03 
V4918 10 2553024 6.76E-03 
V4919 10 2553056 6.36E-03 
V4920 10 2553077 3.15E-04 
V4921 10 2594407 2.96E-04 
V4922 10 2594411 8.57E-04 
V5156 10 6590142 2.08E-03 
V5184 10 7442209 6.16E-03 
V5963 10 7460043 3.68E-04 
V1944 10 10066121 3.84E-04 
V5450 10 11872547 3.87E-03 
V214 10 24056448 2.22E-04 
V215 10 24056497 4.77E-04 
V216 10 24056507 2.86E-05 
V217 10 24056512 8.35E-03 
V709 10 27791481 1.33E-03 
V712 10 27791560 9.33E-03 

V2931 10 30642093 3.90E-03 
V5514 10 34808941 3.77E-04 
V5361 10 36968487 2.90E-04 
V5336 10 37712589 8.61E-03 
V220 10 38001494 5.64E-03 

V5699 10 40827076 3.88E-03 
V5700 10 40827089 2.14E-03 
V5564 10 42635791 3.17E-03 
V1286 10 42738120 9.67E-03 
V5809 10 44037441 4.26E-03 
V5810 10 44037450 4.26E-03 
V5811 10 44037473 3.02E-04 
V5815 10 44150033 8.87E-05 
V5816 10 44150035 5.16E-05 
V5820 10 44183992 3.17E-04 
V5824 10 44184019 6.84E-03 
V5838 10 44457920 5.67E-03 
V5877 10 44741658 1.98E-03 
V6288 11 1860064 2.60E-05 
V6289 11 1905439 1.14E-05 
V6291 11 1905485 1.25E-03 
V6306 11 2236120 2.55E-03 



34 

 

 

 

V6307 11 2236125 7.62E-04 
V6308 11 2236136 2.37E-05 
V6309 11 2236140 7.54E-03 
V6038 11 4709133 2.50E-03 
V1811 11 6804560 1.22E-03 
V1812 11 6804638 7.05E-03 
V772 11 7065738 5.12E-04 

V6304 11 7623511 4.07E-04 
V6305 11 7623569 1.50E-03 
V6264 11 12674994 3.39E-04 
V872 11 13432126 6.83E-04 

V6215 11 22256731 7.74E-05 
V6226 11 22385262 1.66E-03 
V6477 11 23700363 1.94E-03 
V6790 11 26648349 7.52E-03 
V6791 11 26648392 7.04E-03 
V6820 11 27900161 3.06E-03 
V6880 11 28534901 1.52E-03 
V6969 11 29381221 9.55E-05 
V7006 11 29894818 6.13E-04 
V7053 11 30452457 2.81E-03 
V1074 11 30493159 5.59E-03 
V7109 11 31449939 5.08E-04 
V6549 11 31684338 7.57E-03 
V6594 11 32213390 1.03E-05 
V7191 11 32300796 2.46E-03 
V6642 11 32681014 2.80E-03 
V6690 11 33844511 1.36E-03 
V6857 11 36152396 2.04E-03 
V6886 11 36615617 6.55E-04 
V6899 11 36768547 3.40E-05 
V6900 11 36768563 3.14E-04 
V6903 11 36768655 3.04E-05 
V6927 11 36901542 8.16E-04 
V7409 11 40608337 9.46E-03 
V7438 11 41084720 2.43E-03 
V7443 11 41135712 5.62E-06 
V7444 11 41135773 1.42E-05 
V7360 11 42289762 5.14E-03 

 

C. arabica is an allotetraploid from C. canephora and C. eugenioides (Lashermes et al., 

1999), so its genome is divided into two subgenomes, so the front of each SNP marker code is 

preceded by "c" and "e", referring to C. canephora and C. eugenioides, respectively, as can be 

seen in the table 4. 
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Table 4: Functional annotation of SNP insert in genes for Number of Reproductive Nodes and 

Yield. 

SNP Chr Position Gene Functional annotation Trait 
V2681_c 1 3925767 LOC113700785 Uncharacterized Y 
V773_c 1 8922851 LOC113712526 Cytochrome P450 81E8-like Y 
V2830_c 1 10231888 LOC113737716 Uncharacterized Y 
V510_e 1 11268905 LOC113700991 IRK-interacting protein-like Y 
V2935_e 

1 
14094952 

LOC113701199 
Serine/threonine-protein 

kinase Nek6-like Y 
V3116_c 1 34314786 LOC113724086 protein GrpE-like NRN 
V3116_e 

1 
34314786 

LOC113703827 
G2/mitotic-specific cyclin 

S13-7-like NRN 
V3117_c 

1 

34382600 

LOC113739999 

phytochromobilin:ferredoxin 
oxidoreductase, 

chloroplastic-like NRN 
V3117_e 

1 
34382600 

LOC113703885 alcohol dehydrogenase-like 7 NRN 
V1656_e 

1 
37086050 

LOC113689416 
aluminum-activated malate 

transporter 2-like Y 
V1389_e 

1 

37493921 

LOC113705580 

leucine-rich repeat-
containing protein ODA7-

like Y 
V1393_e 

1 

37493976 

LOC113706063 

leucine-rich repeat-
containing protein ODA7-

like Y 
V3534_e 

1 
38197381 

LOC113706812 
poly [ADP-ribose] 
polymerase 3-like Y 

V3598_c 

1 

38972375 

LOC113741358 

spermidine 
hydroxycinnamoyl 

transferase-like Y 
V3598_e 1 38972375 LOC113707094 SRSF protein kinase 2-like Y 
V3635_e 1 39279256 LOC113707094 shugoshin-1-like Y 
V3638_c 

1 
39283941 

LOC113725576 
indole-3-acetaldehyde 

oxidase-like Y 
V3638_e 1 39283941 LOC113695297 uncharacterized  Y 
V3664_c 

1 
39458195 

LOC113741525 
receptor-like protein Cf-9 

homolog Y 
V3664_e 

1 
39458195 

LOC113707272 
ABC transporter F family 

member 1-like Y 
V3670_e 

1 
39517087 

LOC113707286 
ABC transporter G family 

member 3 Y 
V3671_e 

1 
39517161 

LOC113707286 
ABC transporter G family 

member 3 Y 
V3674_e 

1 
39574545 

LOC113707345 
SNF1-related protein kinase 

regulatory subunit beta-3 Y 
V3379_e 

1 
40487725 

LOC113708346 
pentatricopeptide repeat-

containing protein Y 
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At2g27800, mitochondrial-
like 

V3469_c 
1 

40800016 
LOC113726210 

ubiquitin-conjugating 
enzyme E2 variant 1C-like Y 

V3469_e 
1 

40800016 
LOC113708681 

probable protein phosphatase 
2C 4 Y 

V3904_e 1 41046162 LOC113708932 uncharacterized Y 
V3905_e 1 41046176 LOC113708932 uncharacterized Y 
V3488_e 1 41151580 LOC113709139 beta-Amyrin Synthase 2-like Y 
V3489_e 1 41151609 LOC113709139 beta-Amyrin Synthase 2-like Y 
V3526_c 1 41438835 LOC113725935 uncharacterized Y 
V3537_c 

1 
41565994 

LOC113726673 
poly [ADP-ribose] 
polymerase 3-like Y 

V3537_e 1 41565994 LOC113709643 uncharacterized Y 
V3571_c 1 41913639 LOC113726852 uncharacterized Y 
V3578_c 1 42059867 LOC113726927 uncharacterized Y 
V3579_c 1 42059892 LOC113726927 uncharacterized Y 
V3585_c 

1 
42062620 

LOC113726938 
hyoscyamine 6-dioxygenase-

like Y 
V3585_e 

1 

42062620 

LOC113710247 

eukaryotic translation 
initiation factor 3 subunit G-

like Y 
V3605_c 

1 

42356201 

LOC113727118 

vacuolar protein sorting-
associated protein 41 

homolog Y 
V3605_e 

1 
42356201 

LOC113710693 
protein NRT1/ PTR 
FAMILY 8.2-like Y 

V3621_c 
1 

42448177 
LOC113727154 

cyclin-dependent kinases 
regulatory subunit 1 Y 

V3631_c 1 42522006 LOC113727246 probable aquaporin TIP1-1 Y 
V3632_c 1 42522020 LOC113727246 probable aquaporin TIP1-1 Y 
V3639_e 1 42591761 LOC113711001 villin-1-like Y 
V3652_e 

1 
42649531 

LOC113711078 
vacuolar cation/proton 

exchanger 3-like Y 
V3657_c 

1 
42695867 

LOC113727337 
4-coumarate--CoA ligase-

like 7 Y 
V3659_c 1 42704583 LOC113727343 uncharacterized Y 
V3659_e 

1 
42704583 

LOC113711170 
protein O-glucosyltransferase 

1-like Y 
V4283_e 1 44680136 LOC113713753 uncharacterized Y 
V4322_e 1 44854051 LOC113714036 basic blue protein-like Y 
V4493_c 

1 
46145891 

LOC113730695 
ERBB-3 BINDING 

PROTEIN 1-like Y 
V4103_c 

1 
46415138 

LOC113729054 
LOB domain-containing 

protein 12 Y 
V4103_e 

1 
46415138 

LOC113716136 
homocysteine S-

methyltransferase 2-like Y 
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V4117_c 
1 

46448319 
LOC113742966 

malonyl CoA-acyl carrier 
protein transacylase Y 

V4807_e 
1 

48586572 
LOC113719062 

ABC transporter B family 
member 11-like Y 

V4605_c 
1 

48935415 
LOC113733971 

BSD domain-containing 
protein 1-like Y 

V1306_c 

1 

48980848 

LOC113734013 

methyl-CpG-binding 
domain-containing protein 4-

like Y 
V4674_c 1 49440979 LOC113734653 cullin-1-like Y 
V4736_c 

1 

49992250 

LOC113735447 

protein DEHYDRATION-
INDUCED 19 homolog 7-

like Y 
V4737_c 

1 

 49992264 

LOC113735447 

protein DEHYDRATION-
INDUCED 19 homolog 7-

like Y 
V4808_c 

1 
50540487 

LOC113736006 
dnaJ homolog subfamily B 

member 6-like Y 
V7568_e 2 310332 LOC113733380 protein EXPORTIN 1A-like Y 
V7591_c 2 522419 LOC113724807 UNC93-like protein 1 Y 
V7682_c 

2 
1546167 

LOC113724913 
probable WRKY 

transcription factor 41 Y 
V7682_e 

2 
1546167 

LOC113729964 
plastid division protein 

PDV1-like Y 
V7733_c 2 2228026 LOC113725012 uncharacterized Y 
V7733_e 2 2228026 LOC113730048 kinesin-like protein KIN-10C Y 
V7771_c 

2 
2667752 

LOC113725069 
probable methyltransferase 

PMT15 Y 
V7772_c 

2 
2667766 

LOC113725069 
probable methyltransferase 

PMT15 Y 
V7809_c 

2 
3390127 

LOC113725152 
BAG family molecular 

chaperone regulator 7-like Y 
V7848_c 2 4210645 LOC113725255 methylesterase 17 Y 
V7848_e 

2 
4210645 

LOC113730254 
macro domain-containing 

protein VPA0103-like Y 
V8141_e 

2 
8227345 

LOC113730710 
receptor-like protein kinase 

FERONIA Y 
V8142_e 

2 
8227346 

LOC113730710 
receptor-like protein kinase 

FERONIA Y 
V8220_e 

2 
9179904 

LOC113730801 
double-stranded RNA-
binding protein 2-like Y 

V8271_c 
2 

9781605 
LOC113725874 

transcription factor DYT1-
like Y 

V8271_e 2 9781605 LOC113728538 uncharacterized Y 
V8277_e 

2 

9803905 

LOC113730866 

G-type lectin S-receptor-like 
serine/threonine-protein 

kinase At4g27290 Y 
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V8278_e 

2 

9803905 

LOC113730866 

G-type lectin S-receptor-like 
serine/threonine-protein 

kinase At4g27290 Y 
V8277_c 2 9803905 LOC113725875 uncharacterized Y 
V8278_c 

2 
9805963 

LOC113725876 
DAG protein, chloroplastic-

like Y 
V8289_c 

2 
10266215 

LOC113725911 
lysine-specific demethylase 

JMJ25-like Y 
V8289_e 2 10266215 LOC113730904 myosin-2-like Y 
V8294_c 

2 
10304755 

LOC113725914 
transcription factor 

MYB102-like Y 
V8322_c 

2 
10520999 

LOC113725934 
quinone oxidoreductase 

PIG3-like Y 
V8328_c 

2 
10592278 

LOC113725942 
ATP-dependent RNA 

helicase A-like Y 
V8328_e 

2 
10592278 

LOC113730930 
helicase-like transcription 

factor CHR28 Y 
V8349_c 

2 

11200423 

LOC113723900 

pentatricopeptide repeat-
containing protein 
At3g29230-like Y 

V8349_e 2 11200423 LOC113730977 uncharacterized Y 
V8368_c 

2 

11368300 

LOC113726018 

pentatricopeptide repeat-
containing protein 
At2g33760-like Y 

V8370_c 
2 

11479801 
LOC113723906 

short-chain dehydrogenase 
reductase 3b-like Y 

V8387_c 2 12054716 LOC113726081 uncharacterized Y 
V8389_c 2 12063855 LOC113726082 glutaredoxin-C9-like Y 
V8419_e 

2 
12256903 

LOC113731050 
protein CHUP1, 

chloroplastic Y 
V8419_c 2 12256903 LOC113726092 uncharacterized Y 
V8429_e 2 12318079 LOC113731056 uncharacterized Y 
V8430_e 2 12318082 LOC113731056 uncharacterized Y 
V8398_c 

2 

12412575 

LOC113726102 

negative regulator of 
systemic acquired resistance 

SNI1-like Y 
V8398_e 

2 
12412575 

LOC113728599 
receptor kinase-like protein 

Xa21 Y 
V8405_e 2 12557508 LOC113731072 uncharacterized Y 
V8433_c 

2 

12943209 

LOC113724380 

probable LRR receptor-like 
serine/threonine-protein 

kinase At3g47570 Y 
V8433_e 

2 
12943209 

LOC113731096 
receptor kinase-like protein 

Xa21 Y 
V8489_c 

2 

14144922 

LOC113726226 

probable LRR receptor-like 
serine/threonine-protein 

kinase RFK1 Y 
V8555_e 2 14503278 LOC113731236 purple acid phosphatase 2 Y 
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V8514_c 
2 

14863253 
LOC113726260 

peptidyl-prolyl cis-trans 
isomerase CYP21-1-like Y 

V8514_e 

2 

14863253 

LOC113731283 

probable LRR receptor-like 
serine/threonine-protein 

kinase At2g16250 Y 
V8592_c 

2 

15122048 

LOC113726287 

phosphatidylinositol/phospha
tidylcholine transfer protein 

SFH3-like Y 
V8593_c 

2 

15122115 

LOC113726287 

phosphatidylinositol/phospha
tidylcholine transfer protein 

SFH3-like Y 
V8592_e 

2 

15122048 

LOC113729561 

adenylate 
isopentenyltransferase 5, 

chloroplastic-like Y 
V8593_e 

2 

15122115 

LOC113729561 

adenylate 
isopentenyltransferase 5, 

chloroplastic-like Y 
V8608_c 

2 
15199584 

LOC113726299 
probable pinoresinol-

lariciresinol reductase 3 Y 
V8609_c 

2 
15199593 

LOC113726299 
probable pinoresinol-

lariciresinol reductase 3 Y 
V8608_e 

2 
15199584 

LOC113731333 
EEF1A lysine 

methyltransferase 4-like Y 
V8609_e 

2 
15199593 

LOC113731333 
EEF1A lysine 

methyltransferase 4-like Y 
V8610_e 

2 
15202975 

LOC113731335 
probable E3 ubiquitin-

protein ligase ARI2 Y 
V8611_e 

2 
15202976 

LOC113731335 
probable E3 ubiquitin-

protein ligase ARI2 Y 
V8625_e 

2 
15347458 

LOC113731354 
serine/threonine-protein 

kinase SMG1-like Y 
V8631_e 

2 
15384134 

LOC113731363 
diphthamide biosynthesis 

protein 3-like Y 
V8631_e 

2 
15384134 

LOC113731362 
diphthamide biosynthesis 

protein 3-like Y 
V8673_c 

2 
16168941 

LOC113726423 
autophagy-related protein 2-

like Y 
V8676_c 

2 
16168977 

LOC113726423 
autophagy-related protein 2-

like Y 
V8673_e 

2 
16168941 

LOC113731461 
stress enhanced protein 1, 

chloroplastic-like Y 
V8676_e 

2 
16168977 

LOC113731461 
stress enhanced protein 1, 

chloroplastic-like Y 
V8652_c 2 16214191 LOC113726426 protein CYPRO4-like Y 
V8652_e 

2 
16214191 

LOC113731468 
cell division cycle protein 

123 homolog Y 
V8668_c 

2 

16499208 

LOC113726461 

DNA-directed RNA 
polymerases II, IV and V 

subunit 3-like Y 
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V8669_c 

2 

16499212 

LOC113726461 

DNA-directed RNA 
polymerases II, IV and V 

subunit 3-like Y 
V8677_c 

2 

16560250 

LOC113726472 

probable LRR receptor-like 
serine/threonine-protein 

kinase At4g37250 Y 
V8680_c 

2 
16571219 

LOC113726474 
cell division cycle protein 

123 homolog Y 
V8680_e 

2 

16571219 

LOC113731519 

ATP-dependent Clp protease 
proteolytic subunit-related 

protein 1, chloroplastic Y 
V8687_c 

2 
16594128 

LOC113726478 
cinnamyl alcohol 

dehydrogenase 1-like Y 
V8743_e 

2 
16907517 

LOC113731558 
aspartate--tRNA ligase, 

chloroplastic/mitochondrial NRN 
V8743_c 

2 

16907517 

LOC113726524 

BTB/POZ domain-
containing protein NPY2-

like NRN 
V8744_e 

2 
16907560 

LOC113731558 
aspartate--tRNA ligase, 

chloroplastic/mitochondrial NRN 
V8744_c 

2 

16907560 

LOC113726524 

BTB/POZ domain-
containing protein NPY2-

like NRN 
V8587_e 

2 
17847283 

LOC113731653 
phosphatidylinositol 4-kinase 

alpha 1-like Y 
V8587_c 2 17847283 LOC113726636 uncharacterized Y 
V8977_e 

2 
20172274 

LOC113731882 
ATP-dependent DNA 

helicase Q-like 4A Y 
V8977_c 2 20172274 LOC113722748 uncharacterized Y 
V8849_e 2 20202098 LOC113731885 MLO-like protein 4 Y 
V8868_c 2 20395684 LOC113725085 uncharacterized Y 
V8868_e 2 20395684 LOC113731911 uncharacterized Y 
V8895_e 

2 
20806412 

LOC113728771 
DNA (cytosine-5)-

methyltransferase 1B-like Y 
V8896_e 

2 
20810259 

LOC113731952 
NADPH-dependent pterin 

aldehyde reductase Y 
V8905_e 2 21060957 LOC113731976 GTPase Der NRN 
V8905_c 

2 
21060957 

LOC113726920 
nucleolar GTP-binding 

protein 1-like YRN 
V9011_c 

2 

21195891 

LOC113726937 

NADH dehydrogenase 
[ubiquinone] iron-sulfur 
protein 8, mitochondrial Y 

V354_c 
2 

27616187 
LOC113723028 

subtilisin inhibitor CLSI-I-
like Y 

V9189_c 2 31083032 LOC113727251 uncharacterized Y 
V9295_e 2 33094940 LOC113729006 cytochrome P450 87A3-like Y 
V147_e 

2 

53474348 

LOC113729204 

probable 
pectinesterase/pectinesterase 

inhibitor 25 Y 
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V9634_c 2 57478470 LOC113727543 uncharacterized Y 
V9697_c 

2 
58842880 

LOC113727596 
cation/calcium exchanger 5-

like Y 
V9684_c 2 59202346 LOC113727613 cyclin-P3-1-like Y 
V9666_c 

2 
59551188 

LOC113727629 
DNA polymerase zeta 
catalytic subunit-like Y 

V9652_c 

2 

59888512 

LOC113727657 

heavy metal-associated 
isoprenylated plant protein 

35-like Y 
V9802_c 

2 
60101536 

LOC113727668 
dormancy-associated protein 

homolog 3-like Y 
V9964_e 

2 
61762987 

LOC113729328 
protein FAR1-RELATED 

SEQUENCE 5-like Y 
V9932_c 

2 
62076582 

LOC113727828 
psbP domain-containing 

protein 1, chloroplastic-like Y 
V10155

_c 2 
64080402 

LOC113728002 F-box protein PP2-A13-like Y 
V10177

_e 2 
64504213 

LOC113732790 
aspartic proteinase-like 

protein 2 Y 
V10178

_e 2 
64504222 

LOC113732790 
aspartic proteinase-like 

protein 2 Y 
V9708_e 

2 
64561829 

LOC113732794 
probable serine/threonine-

protein kinase PBL7 Y 
V9708_c 

2 
64561829 

LOC113724697 
protein O-glucosyltransferase 

1-like Y 
V1360_c 

3 
3754775 

LOC113734210 
putative ion channel 

POLLUX-like 2 Y 
V1360_e 3 3754775 LOC113736199 uncharacterized Y 
V491_e 

3 
11695179 

LOC113736538 
cellulose synthase-like 

protein G3 Y 
V2036_e 

3 
15592880 

LOC113737448 
eIF-2-alpha kinase GCN2-

like Y 
V2037_e 

3 
15592885 

LOC113737448 
eIF-2-alpha kinase GCN2-

like Y 
V962_e 3 25515454 LOC113736734 calreticulin-3-like Y 
V1527_c 4 12805764 LOC113740321 COBRA-like protein 2 Y 
V927_e 

4 
36103351 

LOC113741010 
DNA annealing helicase and 
endonuclease ZRANB3-like Y 

V213_e 

5 

18861837 

LOC113743955 

BTB/POZ domain-
containing protein 
At5g48130-like Y 

V1314_e 
5 

25578972 
LOC113687324 

cysteine-rich receptor-like 
protein kinase 25 Y 

V1315_e 
5 

25578998 
LOC113687324 

cysteine-rich receptor-like 
protein kinase 25 Y 

V2357_c 
5 

36230080 
LOC113690110 

putative late blight resistance 
protein homolog R1C-3 Y 

V1405_c 5 37804264 LOC113688755 uncharacterized  Y 
V1981_e 6 18199439 LOC113697570 uncharacterized Y 
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V1983_e 6 18199494 LOC113697570 uncharacterized Y 
V6318_c 

6 

26364086 

LOC113693594 

pentatricopeptide repeat-
containing protein 

At3g18110, chloroplastic-
like Y 

V6319_c 

6 

26364122 

LOC113693594 

pentatricopeptide repeat-
containing protein 

At3g18110, chloroplastic-
like Y 

V10038
_c 6 

54076570 
LOC113692051 uncharacterized Y 

V856_c 
7 

2564680 
LOC113697895 

probable UDP-
arabinopyranose mutase 1 Y 

V856_e 7 2564680 LOC113701139 protein SHORT-ROOT-like Y 
V941_c 

7 
6028346 

LOC113698207 
LOB domain-containing 

protein 41-like Y 
V941_e 

7 

6028346 

LOC113701457 

probable metal-
nicotianamine transporter 

YSL7 Y 
V890_c 7 16431338 LOC113697853 uncharacterized Y 
V890_c 7 16431338 LOC113697851 protein LAZY 1-like Y 
V75_c 

7 
33706981 

LOC113699143 
CCR4-NOT transcription 
complex subunit 11-like Y 

V75_e 7 33706981 LOC113701244 F-box protein CPR1-like Y 
V1583_c 

9 
5251763 

LOC113708815 
UDP-N-acetylglucosamine 

diphosphorylase 1-like Y 
V1411_e 

9 

26900826 

LOC113710463 

phospho-N-acetylmuramoyl-
pentapeptide-transferase 

homolog Y 
V1470_c 9 33200105 LOC113707872 uncharacterized Y 
V4918_e 

10 

2553024 

LOC113711862 

probable 
galacturonosyltransferase-

like 1 Y 
V4919_e 

10 

2553056 

LOC113711862 

probable 
galacturonosyltransferase-

like 1 Y 
V4920_e 

10 

2553077 

LOC113711862 

probable 
galacturonosyltransferase-

like 1 Y 
V4921_e 

10 
2594407 

LOC113712363 
BEL1-like homeodomain 

protein 4 Y 
V4922_e 

10 
2594411 

LOC113712363 
BEL1-like homeodomain 

protein 4 Y 
V5156_e 10 6590142 LOC113711742 uncharacterized Y 
V5184_e 

10 
7442209 

LOC113710842 
XIAP-associated factor 1-

like Y 
V5963_c 

10 

7460043 

LOC113714564 

putative 12-
oxophytodienoate reductase 

11 Y 
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V5963_e 
10 

7460043 
LOC113710944 

probable 
rhamnogalacturonate lyase B Y 

V214_e 
10 

24056448 
LOC113712412 

beta-1,3-
galactosyltransferase 7-like Y 

V215_e 
10 

24056497 
LOC113712412 

beta-1,3-
galactosyltransferase 7-like Y 

V216_e 
10 

24056507 
LOC113712412 

beta-1,3-
galactosyltransferase 7-like Y 

V217_e 
10 

24056512 
LOC113712412 

beta-1,3-
galactosyltransferase 7-like Y 

V709_c 
10 

27791481 
LOC113713621 

nitrate reductase [NADH]-
like Y 

V712_c 
10 

27791560 
LOC113713621 

nitrate reductase [NADH]-
like Y 

V5514_e 

10 

34808941 

LOC113712414 

signal recognition particle 43 
kDa protein, chloroplastic-

like Y 
V5514_e 10 34808941 LOC113712415 replication factor C subunit 3 Y 
V5361_e 

10 
36968487 

LOC113712139 
probable serine/threonine-

protein kinase PBL12 Y 
V220_e 

10 

38001494 

LOC113712174 

dehydration-responsive 
element-binding protein 1J-

like Y 
V5699_c 10 40827076 LOC113713831 uncharacterized Y 
V5700_c 10 40827089 LOC113713831 uncharacterized Y 
V1286_c 

10 
42738120 

LOC113714644 
zinc finger CCCH domain-
containing protein 55-like Y 

V5809_c 
10 

44037441 
LOC113714295 

abscisic stress-ripening 
protein 5-like Y 

V5810_c 
10 

44037450 
LOC113714295 

abscisic stress-ripening 
protein 5-like Y 

V5811_c 
10 

44037473 
LOC113714295 

abscisic stress-ripening 
protein 5-like Y 

V5838_c 
10 

44457920 
LOC113713825 

tryptophan aminotransferase-
related protein 4-like Y 

V6038_c 11 4709133 LOC113717310 uncharacterized Y 
V6304_e 11 7623511 LOC113717847 uncharacterized Y 
V6305_e 11 7623569 LOC113717847 uncharacterized Y 
V6264_c 

11 

12674994 

LOC113716958 

serine/threonine-protein 
phosphatase 2A activator-

like Y 
V6790_c 

11 

26648349 

LOC113716118 

probable S-
adenosylmethionine-

dependent methyltransferase 
At5g38100 Y 

V6791_c 

11 

26648392 

LOC113716118 

probable S-
adenosylmethionine-

dependent methyltransferase 
At5g38100 Y 
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V6790_e 
11 

26648349 
LOC113719108 

probable disease resistance 
protein At1g58602 Y 

V6791_e 
11 

26648392 
LOC113719108 

probable disease resistance 
protein At1g58602 Y 

V6820_c 
11 

27900161 
LOC113716177 

probable inactive receptor 
kinase At5g16590 Y 

V6880_c 11 28534901 LOC113717158 uncharacterized Y 
V6969_c 11 29381221 LOC113717020 uncharacterized Y 
V7006_c 

11 
29894818 

LOC113717235 
tryptophan synthase alpha 

chain-like Y 
V7053_c 

11 
30452457 

LOC113716220 
putative late blight resistance 

protein homolog R1A-10 Y 
V7109_c 

11 
31449939 

LOC113716538 
serotonin N-acetyltransferase 

2, chloroplastic Y 
V6594_c 

11 

32213390 

LOC113716326 

alpha-1,4 glucan 
phosphorylase L-2 isozyme, 
chloroplastic/amyloplastic-

like Y 
V7191_c 

11 

32300796 

LOC113715681 

pentatricopeptide repeat-
containing protein 

At2g03380, mitochondrial-
like Y 

V6642_c 11 32681014 LOC113716244 myb-like protein AA Y 
V6690_c 11 33844511 LOC113717037 uncharacterized Y 
V6886_e 

11 
36615617 

LOC113717766 
probable sulfate transporter 

3.3 Y 
V6927_e 

11 
36901542 

LOC113717916 
putative late blight resistance 

protein homolog R1B-16 Y 
V7409_e 

11 
40608337 

LOC113718957 
protein DETOXIFICATION 

29-like Y 
V7438_e 

11 
41084720 

LOC113717845 
E3 ubiquitin-protein ligase 

AIRP2-like Y 
V7443_e 11 41135712 LOC113717564 DELLA protein GAI-like Y 
V7444_e 11 41135773 LOC113717564 DELLA protein GAI-like Y 
V7360_e 11 42289762 LOC113719459 transaldolase Y 
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4 DISCUSSION 

It is known that yield is a polygenic characteristic, thus, the study of dependencies between 

the characteristics that influence production at the level of molecular markers could be carried 

out, from the construction of a Bayesian Network, using the HC algorithm, which incorporates 

the four traits and finally being incorporated into a GWAS model based on SEM to decompose 

the SNP effects into direct and indirect on the trait. 

 Studies considering yield of C. arabica using GBLUP and ANOVA found low to 

medium heritability results, as seen in Sousa et al. (2019) and Weldemichael et al. (2017), who 

found a value of 0.26 and 0.28, respectively. Carvalho et al. (2019) considering the same 

method in Coffea canephora found 0.15, while in this study was found 0.14. For vegetative 

vigor, Sousa et al. (2019) found heritability of 0.34 and Carvalho et al. (2019) using GBLUP 

for canephora coffee found heritability of 0.23, while in this study, the heritability value was 

0.39. For fruit size, in this study was found genomic heritability result of 0.61, while Sousa et 

al. (2019) obtained 0.36. For number of reproductive nodes in this study was found heritability 

result of 0.13, while Sousa et al. (2019) found 0.23. Thus, we can observe that the heritability 

values found are similar to those in the literature.  

 With the use of the Bayesian network together with SEM, it was possible to obtain 

coefficients of paths that interconnect important characteristics in Arabica coffee. It can be 

observed that there was a positive connection both directly (VV → Y) and indirectly (VV → 

NNR → Y) positive between VV and Y, thus indicating that the better the vegetative vigor 

status of the plant, the greater will be its production. Rodrigues et al. (2012), studying the 

influence of vegetative vigor on production, observed that it limits production. The opposite 

was observed when we analyzed the influence of NRN and FS on Y. Jaeggi et al. (2019) using 

path analysis, also has a negative relationship between NRN and Y. This relationship can be 

explained by the high drain for the development of many nodes, which leads to a reduction in 

the availability of nutrients for fruit formation. 

 Gene identification analysis based on information from the NCBI (2021) allowed 

detecting 189 SNP associated with the Yield, inserted in genes (Table 4). There were 

occurrences of markers allocated to the same gene on several chromosomes, as seen in the table 

4. Their functional annotation and gene can be seen in same table. SNP that were not located 

within genes are also relevant for use as genetic markers in breeding. Molecular marker does 

not necessarily need to be inserted in a gene to detect genetic differences between individuals, 

it can be associated with the gene and be efficient (Andersen & Lubberstedt, 2013). 
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Furthermore, the SNP may be in promoter or regulatory regions, and therefore involved in gene 

expression. 

 According to the functional annotation of the genes in which the SNP are inserted, no 

mechanism was identified that has a direct influence on NRN control, however, for Y it was 

possible to identify some genes that have a direct influence on its control, such as the genes: i) 

LOC113731461_e - Stress enhanced protein 1, chloroplastic; ii) LOC113714295_c - Abscisic 

stress-ripening protein 5; iii) LOC113726102_c - Negative regulator of systemic acquired 

resistance SNI1. De acordo com Heddad & Adamska (1999), estudando Arabdopsis thaliana, 

the stress enhanced protein 1, chloroplastic pode desempenhar um papel fotoprotetor na 

membrana tilacóide em resposta ao estresse luminoso. Li et al, (2017), in rice studies, identified 

the involvement of Abscisic stress-ripening protein 5 in drought tolerance, playing a positive 

role in response to water stress, regulating Abscisic Acid (ABA) biosynthesis, promoting 

stomatal closure and acting as a protein similar to chaperone that possibly prevents the 

inactivation of proteins related to water stress. Durrant et al., (2007), identified a negative 

reduction in gene expression and DNA recombination during a susceptible pathogen infection, 

therefore, involved in a short-term defense response and a long-term supply strategy. 
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5 CONCLUSION 

With this study, it was possible to extend the study of the genome association study using 

several characters, adding a Bayesian network structure, and thus quantifying the genetic 

interrelationships between important characteristics of arabica coffee, so that it was possible to 

estimate the genetics direct and indirect effects and then understand the genetic architecture 

formed. Thus, we identified a positive interrelationship between vegetative vigor in production 

and vegetative vigor for the number of reproductive nodes and negative for the number of 

reproductive nodes and size of the fruit for production. It was also possible to detect significant 

genomic regions, and thus identify three genes that act directly on production. 
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7 ATTACHMENTS 

 

 

 
SF1: Manhattan plots with enlargement for SNP effects on Yield obtained using SEM-GWAS 
based on the network structure learned by Hill Climbing algorithm. VV: vegetative vigor; Y: 
Yield. 

 
 

 
SF2: Manhattan plots with enlargement for SNP effects on Yield obtained using SEM-GWAS 
based on the network structure learned by Hill Climbing algorithm. NRN: number of 
reproductive nodes; Y: Yield. 
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SF3: Manhattan plots with enlargement for SNP effects on Yield obtained using SEM-GWAS 
based on the network structure learned by Hill Climbing algorithm. VV: vegetative vigor; NRN: 
number of reproductive nodes; Y: Yield. 

 

 

 
 

SF4: Manhattan plots with enlargement for SNP effects on Yield obtained using SEM-GWAS 
based on the network structure learned by Hill Climbing algorithm. FS: fruit size; Y: Yield. 
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SF5: Manhattan plots with enlargement for SNP effects on number of reproductive nodes 
obtained using SEM-GWAS based on the network structure learned by Hill Climbing 
algorithm. VV: vegetative vigor; NRN: number of reproductive nodes. 
 

 
 
Convergence analysis 

 
#niter=1.2M; burnin=50k; thin=50 
R 
 
LAGS AND AUTOCORRELATIONS: 
========================== 
 
Chain: R 
--------- 
 
         Lag 1         Lag 5       Lag 10        Lag 50 
V1  0.04149533  0.0235427939 -0.006817042  0.0033779687 
V2  0.02961728  0.0063482279 -0.007710827  0.0117975961 
V3  0.03231226  0.0145107318 -0.004858921 -0.0016827318 
V4  0.09297639  0.0273947132 -0.006736830 -0.0092522235 
V5  0.01762976  0.0110801337 -0.005240808  0.0076986133 
V6  0.03700064  0.0205398452  0.008732112  0.0116028048 
V7  0.05790439  0.0006186543 -0.012360439  0.0044281055 
V8  0.03237568 -0.0009093089 -0.005749035 -0.0006198499 
V9  0.06379039  0.0023251174 -0.013951965 -0.0093901876 
V10 0.13238355  0.0119532470  0.001860423 -0.0076808849 
 
 
GEWEKE CONVERGENCE DIAGNOSTIC: 
============================== 
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Fraction in first window = 0.1 
Fraction in last window = 0.5 
 
Chain: R 
--------- 
 
  V1        V2        V3         V4        V5         V6        V7         V8         V9      V10 
Z-Score -1.1294541 0.5574693 0.8888514 -0.2998819 2.3666849 2.13349019 

0.1313820 -0.3700722 -0.7448091 0.817195 
p-value  0.2587063 0.5772068 0.3740830  0.7642673 0.0179482 0.03288454 

0.8954731  0.7113287  0.4563871 0.413817 
 

 
RAFTERY AND LEWIS CONVERGENCE DIAGNOSTIC: 
========================================= 
 
Quantile = 0.025 
Accuracy = +/- 0.005 
Probability = 0.95 
 
Chain: R 
--------- 
 
    Thin Burn-in Total Lower Bound Dependence Factor 
V1     1       2  3945        3746          1.053123 
V2     1       2  3685        3746          0.983716 
V3     1       2  3918        3746          1.045916 
V4     1       3  4083        3746          1.089963 
V5     1       2  3761        3746          1.004004 
V6     1       1  3747        3746          1.000267 
V7     1       2  3813        3746          1.017886 
V8     1       2  3787        3746          1.010945 
V9     1       2  3839        3746          1.024826 
V10    1       3  4126        3746          1.101442 
 
G 
 
LAGS AND AUTOCORRELATIONS: 
========================== 
 
Chain: G 
--------- 
 
         Lag 1        Lag 5        Lag 10        Lag 50 
V1  0.50239132  0.077037131  0.0071986248 -0.0179243518 
V2  0.28350716  0.002370659 -0.0137969840 -0.0026106310 
V3  0.25079798  0.006981694  0.0006316473  0.0096776876 
V4  0.49937999  0.056537403  0.0122162507 -0.0064765711 
V5  0.08125254 -0.007490150 -0.0010329143 -0.0107218453 
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V6  0.10319785  0.009822392 -0.0043233122 -0.0018757567 
V7  0.19415597  0.008209455 -0.0043513509 -0.0043207583 
V8  0.08347748  0.009255031 -0.0051651627  0.0008708542 
V9  0.18075899 -0.006594235  0.0005265323  0.0035707331 
V10 0.30557140  0.006918642  0.0091229355  0.0015180381 
 
 
GEWEKE CONVERGENCE DIAGNOSTIC: 
============================== 
 
Fraction in first window = 0.1 
Fraction in last window = 0.5 
 
Chain: G 
--------- 
 
 V1        V2         V3        V4          V5         V6         V7         V8        V9 
Z-Score 0.2529986 0.2349770 0.02624938 0.2208149 -1.78450922 -1.1372147 

1.73556554 -0.4125141 1.6217126 
p-value 0.8002693 0.8142266 0.97905843 0.8252366  0.07434096  0.2554485 

0.08264068  0.6799627 0.1048649 
               V10 
Z-Score -0.2016144 
p-value  0.8402182 

 
 
RAFTERY AND LEWIS CONVERGENCE DIAGNOSTIC: 
========================================= 
 
Quantile = 0.025 
Accuracy = +/- 0.005 
Probability = 0.95 
 
Chain: G 
--------- 
 
    Thin Burn-in Total Lower Bound Dependence Factor 
V1     1       3  4434        3746          1.183663 
V2     1       4  4638        3746          1.238121 
V3     1       3  4306        3746          1.149493 
V4     1       4  4719        3746          1.259744 
V5     1       2  3905        3746          1.042445 
V6     1       2  3774        3746          1.007475 
V7     1       2  3972        3746          1.060331 
V8     1       2  3865        3746          1.031767 
V9     1       3  4028        3746          1.075280 
V10    1       3  4403        3746          1.175387 
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SF6: Correlation plots of decomposed SNP effects for NRN. Each point corresponds to the 
estimated effect of a SNP which direct affects NRN. 

 

SF7: Correlation plots of decomposed SNP effects for NRN. Each point corresponds to the 
estimated effect of a SNP which indirect affects NRN. 
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SF8: Correlation plots of decomposed SNP effects for Y. Each point corresponds to the 
estimated effect of a SNP which direct affects Y. 

 

SF9: Correlation plots of decomposed SNP effects for Y. Each point corresponds to the 
estimated effect of a SNP which indirect affects Y. 
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SF10: Correlation plots of decomposed SNP effects for Y. Each point corresponds to the 
estimated effect of a SNP which indirect affects Y. 

 

SF11: Correlation plots of decomposed SNP effects for Y. Each point corresponds to the 
estimated effect of a SNP which indirect affects Y. 
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SF12: Correlation plots of decomposed SNP effects for Y. Each point corresponds to the 
estimated effect of a SNP which indirect affects Y. 
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