MAURÍLIO NELSON MARTINS TEIXEIRA

DETERMINAÇÃO DA DEGRADABILIDADE IN SITU DAS DIFERENTES FRAÇÕES DA CASCA DO GRÃO DE TRÊS CULTIVARES DE CAFÉ (Coffea arabica, L.)

Dissertação apresentada à Universidade Federal de Lavras como parte das exigências da curso de Mestrado em Zootecnia Área de Concentração em Nutrição de Ruminantes, para obtenção do título de “Mestre”.

Orientador

Prof. Juan Ramon Olalquiaga Perez

LAVRAS
MINAS GERAIS – BRASIL
1999
Aos meus pais,

Nelson e Maninha, pelo carinho e dedicação

Aos meus irmãos,

Maurício e Marly, pela confiança

Com amor,

À minha esposa Elizângela e ao nosso filho,

João Lucas, por iluminarem minha vida.

DEDICO
AGRADECIMENTOS

A Deus, por tudo.
À Universidade Federal de Lavras - (UFLA), em especial ao Departamento de Zootecnia pela oportunidade de realizar o curso.
Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pela concessão da bolsa de estudos.
Ao Professor Juan Ramon Olalquiaga Perez, pela amizade, incentivo, orientação e grande paciência durante esta jornada.
Ao Professor Elias Tadeu Fialho, pelo grande trabalho à frente da Coordenadoria do Curso de Mestrado em Zootecnia e ao Professor Antônio Soares Teixeira, atual coordenador, pela compreensão.
Aos Professores Joel Augusto Muniz, Maria das Graças Carvalho Moura e Silva, Tarcisio de Moraes Gonçalves, pelas valiosas sugestões, carinho e colaboração dados para a apresentação deste trabalho e aos demais professores do Departamento de Zootecnia que de alguma forma ajudaram nesta jornada.
Ao Chefe do Setor de Produção, José Geraldo Vilas Boas e toda a sua equipe, pela ajuda durante a condução do experimento e aos funcionários do Laboratório de Nutrição Animal, do Departamento de Zootecnia da UFLA, Eliana Maria dos Santos, Márcio dos Santos Nogueira, Suelba Ferreira de Souza, Gilberto e José Geraldo Virgílio, pela colaboração nas análises bromatológicas.
Ao secretário do Curso de Pós-Graduação em Zootecnia, Carlos Henrique de Souza, pelas informações prestadas com tanta gentileza.
À colega Ingrid Robles Moron, pela ajuda na montagem do experimento e aos grandes amigos do curso de Pós-Graduação: Ademir Conte e Elô, Solano e Cláudia, Antônio Marcos, Alberto e Sônia, Júlio, Victor, Eustáquio, Ademir Maciel, Cláudio, José Henrique, Patricia, Célia, Sandra, Marcelo, Homero,
Edson e Willibaldo, pelo grande apoio, incentivo, solidariedade, fraternidade e carinho que senti de todos, tanto nos momentos mais alegres e divertidos como nos momentos mais duros e difíceis.

Aos meus grandes amigos da graduação, Mário Lúcio de Andrade e Antônio Augusto Athayde, pelo encorajamento e incentivo.

Aos doutores Marcos Cherem, Januário Manoel e sua equipe, pela reabilitação à vida.

A todos que direta ou indiretamente contribuíram para a realização deste trabalho.
SUMÁRIO

RESUMO .. 1
ABSTRACT .. ii
1 INTRODUÇÃO .. 1
2 REFERENCIAL TEÓRICO .. 2
 2.1 Casca do grão de café .. 2
 2.2 Composição química da casca do grão de café ... 4
 2.2.1 Conteúdo de matéria seca e proteína bruta ... 4
 2.2.2 Conteúdo de fibra em detergente neutro e fibra em detergente ácido 5
 2.3 Técnica da degradabilidade in situ .. 9
 2.4 Degradabilidade ruminal da casca do grão ... 9
3 MATERIAL E METODOS .. 10
 3.1 Local e fatores climáticos .. 10
 3.2 Período experimental .. 11
 3.3 Animais experimentais, manejo e alimentação .. 11
 3.4 Obtenção do material estudado, preparo e condução do experimento 12
 3.5 Análises laboratoriais ... 14
 3.6 Avaliação estatística .. 15
4 RESULTADOS E DISCUSSÕES .. 16
 4.1 Composição percentual dos constituintes da casca do grão de café 16
 4.2 Composição química .. 17
 4.2.1 Conteúdo de matéria seca (MS) e proteína bruta (PB) 18
 4.2.2 Conteúdo de fibra em detergente neutro (FDN) e fibra em detergente ácido (FDA) ... 19
 4.3 Degradabilidade da matéria seca (MS) .. 20
 4.4 Degradabilidade da proteína bruta (PB) ... 25
 4.5 Degradabilidade da fibra em detergente neutro (FDN) .. 29
 4.6 Degradabilidade da fibra em detergente ácido (FDA) .. 33
5 CONCLUSÕES .. 35
6 REFERÊNCIAS BIBLIOGRÁFICAS ... 36
ANEXOS ... 40
RESUMO

Com o objetivo de avaliar o valor nutritivo e a degradabilidade ruminal da matéria seca (MS), proteína bruta (PB), fibra em detergente neutro (FDN) e fibra em detergente ácido (FDA) através da técnica de incubação "in situ", foi conduzido um experimento no Departamento de Zootecnia da Universidade Federal de Lavras - MG. Foram utilizadas duas vacas não lactantes, da raça Jersey, providas de câmara ruminal, nas quais foram incubadas amostras de diferentes frações da casca do grão de três cultivares de café. Aproximadamente 4,0 gramas de cada amostra foram colocadas dentro dos sacos de náilon, tamanho 12 x 9 cm, com porosidade de 55 μ e incubadas no rúmen dos seguintes tempos: 0; 1,5; 3,0; 4,5; 6,0; 12,0; 24,0; 48,0 e 96,0 horas. Os sacos foram introduzidos sucessivamente, do maior para o menor intervalo de tempo e retirados todos de uma só vez. Foram resfriados, lavados em máquina apropriada para lavagem de sacos, secos em estufa a 65° por 48 horas, pesados e analisados quanto à matéria seca (MS), proteína bruta (PB), fibra em detergente neutro (FDN) e fibra em detergente ácido (FDA). Observou-se que as frações da casca do grão de café apresentaram altos teores de matéria seca (MS), dores estas bastante semelhantes. O teor de proteína bruta (PB) fibra em detergente neutro (FDN) e fibra em detergente ácido (FDA) das diferentes frações da casca do grão de café apresentaram variações elevadas, principalmente para a casca "melosa" e o pergaminho, com comportamento semelhante para os três cultivares. Foram observadas também variações elevadas quanto às degradabilidades potencial (DP) e efetiva (DE) para matéria seca (MS), proteína bruta (PB), fibra em detergente neutro (FDN) e fibra em detergente ácido (FDA), das diferentes frações da casca do grão de café. A DP para a matéria seca das diferentes frações da casca do grão de café apresentou valores elevados para a casca "melosa" e valores extremamente baixos para o pergaminho, sendo que o cultivar Mundo Novo apresentou os maiores índices de DE para a MS da casca "melosa". Notou-se também um DP e uma DE para a PB da casca "melosa" do cultivar Mundo Novo os valores mais elevados. Os valores mais baixos observados de DP e DE para a PB foram para o pergaminho. A casca "melosa" dos três cultivares apresentaram bons índices de DP para a FDN e FDA, porém os resultados da DE para a FDN podem ser considerados muito baixos.

* Comitê Orientador: Juan Ramon Olakquiga Perez-UFLA (Orientador), Joel Augusto Muniz - UFLA, Maria das Graças Carvalho Moura e Silva- UFLA.
ABSTRACT

With a view to evaluating the nutritive value and ruminal degradability of dry matter (DM), crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) through the "in situ" incubation technique, an experiment was conducted at the Department of Animal Science, of the Universidade Federal de Lavras - Minas Gerais, Brazil. Two non lactating cows of the Jersey breed fitted with ruminal cannulae in which samples of different fractions of the grain hull of three coffee cultivars were incubated. About 4.0 grams of each sample were placed into nylon bags, 12 x 9 cm in size, with porosity of 55 µ and incubated in the rumen in the following times: 0; 1.5; 3.0; 4.5; 6.0; 12.0; 24.0; 48.0 and 96.0 hours. The bags were successively introduced from the longest to the shortest time interval and removed all at one time, they were then cooled, washed in a machine suitable for bag washing, oven dried at 65°C. for 48 hours, weighted and analysed as for dry matter (DM), crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF). It was found that the fractions of coffee grain hull presented the highest dry matter (DM) contents which were greatly similar. The contents of crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) of the different fractions of coffee grain hull presented very high variations, chiefly for the "sticky" hull and pergamino the three cultivars having behaved in a similar manner. Also, variations were observed as to the potential (PD) and effective (ED) degradabilities of dry matter (DM), crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF). PD to the DM of the different fractions of coffee grain hull presented elevated values for the "sticky" hull and extremely low values for the pergamino, the cultivar Mundo Novo presenting the highest ED index for the "sticky" hull. A PD and ED of the CP to the "sticky" hull of the cultivar Mundo Novo was also noticed, the highest values. The lowest values observed of PD and ED were to the pergamino. The "sticky" hull of the three cultivars presented good PD index of NDF and ADF, but the results for effective degradability may be considered as being very low.

* Guidance Committee: Juan Ramon Olalquiaga Perez - UFLA (Major Professor), Joel Augusto - UFLA, Maria das Graças Carvalho Moura e Silva - UFLA.
Os animais ruminantes representam uma das fontes mais valiosas de recurso renovável para a humanidade, produzindo carne, leite, lã, couro e força para o trabalho. Os alimentos de origem animal, como a carne, o leite e seus derivados, contêm proteínas de alto valor biológico. Além da importância na nutrição humana como fornecedores de alimentos, os ruminantes têm ainda grande importância na agropecuária, porque podem utilizar muitos resíduos e subprodutos gerados pela atividade agroindustrial.

Visando melhorar a produtividade dos rebanhos torna-se necessário melhorar a quantidade, a qualidade e o custo do alimento consumido pelos animais, utilizando com maior eficiência os materiais fibrosos disponíveis e não utilizados pelo homem e outros animais monogástricos domésticos.

Dentre estes materiais fibrosos disponíveis encontra-se a palha de café (Coffea arábica, L).

O Brasil é o maior produtor mundial de café com um produção de 28,0 milhões de sacas do produto beneficiado em 1997 (Vegro, 1997). Segundo informações fornecidas pelo Serviço de Beneficiamento de Café da Cooperativa de Araraquara - SP, citado por Caielli (1984), a produção de palha de café por saca de 40,5 kg de café em "coco", é de 20,5 kg, ou seja, praticamente igual à de café beneficiado. O grande volume de resíduos gerado pelo beneficiamento do café tornou a casca, que é o subproduto resultante deste beneficiamento um objeto de estudo para o aproveitamento na alimentação animal.

Entretanto, para a correta utilização deste resíduo como alimento é necessária a geração de conhecimentos sobre o seu valor nutritivo. Como forma de avaliação de alimentos para ruminantes, a técnica do saco de náilon tem se apresentado como uma alternativa viável, principalmente em função de sua
simplicidade e economicidade (Orskov e McDonald, 1979).

Embora a técnica tenha sido mais empregada para estudos de degradabilidade da proteína, a dinâmica ruminal de outros nutrientes pode também ser avaliada.

O conhecimento da degradabilidade efetiva e da taxa de degradação dos alimentos utilizados nas dietas dos ruminantes, aliado aos dados de composição química, permite o cálculo de dietas mais adequadas, proporcionando uma produção mais eficiente.

É importante salientar que na literatura consultada não foram encontrados estudos avaliando a casca “melosa” e as implicações que teria o seu uso como alimento sem a presença do pergaminho na dieta dos ruminantes.

O objetivo do presente trabalho foi avaliar a composição química e determinar a degradabilidade efetiva e potencial da matéria seca, proteína bruta, fibra em detergente neutro e fibra em detergente ácido, das frações da casca integral, da casca “melosa” e do pergaminho do grão de 3 cultivares de café.

2 Referencial teórico

2.1 Casca do grão de café

A maioria dos trabalhos realizados com subprodutos do café utilizou a polpa e, em menor número a casquinha ou pergaminho, após fermentações da mucilagem (Caielli, 1984). Segundo este autor, a produção de palha de café ocorre entre os meses de junho a dezembro, por ocasião do beneficiamento do produto, época que coincide com a escassez de forragem verde.

O fruto do café é composto pelo grão ou endosperma, o pergaminho ou endocarpo (membrana que reveste externamente o grão), uma capa mucilaginosa ou mesocárpio (reveste externamente o pergaminho) e a casca ou epicárpio, que
é a membrana externa que recobre todo o fruto da café (Matiello, 1991).

Bressani, Estrada e Jarquim (1972) utilizaram, em laboratório, equipamento de processamento e determinaram, com base na matéria seca, que a polpa representa aproximadamente 29%, o pergaminho 12%, a mucilagem 5% e o grão 54% do café cereja.

No Brasil, a forma mais comum de beneficiamento do café é por via seca, na qual o fruto é seco na sua forma integral (em coco), originando o café beneficiado e a palha (onde estão a polpa, a mucilagem e o pergaminho), com presença de baixa umidade.

Em alguns países da América Central, México, Colômbia, Quênia e África do Sul, o café (cereja) é beneficiado via úmida, sendo despolpado antes da secagem (Bartholo et al., 1989).

Diversos estudos relativos ao uso da polpa de café têm demonstrado que este subproduto contém nutrientes em quantidades adequadas para ser usado na alimentação de animais ruminantes (Bressani, Estrada e Jarquin, 1972), porém, a inclusão de polpa desidratada na dieta induz a uma redução no ganho de peso, no consumo e na eficiência da conversão alimentar de bezerros (Braham et al., 1973). Pesquisas utilizando casca de café em substituição ao milho desintegrado palha e sabugo (MDPS) até o nível de 30% não encontraram alterações no ganho de peso de novilhos confinados (Barcelos et al., 1992), no consumo, na variação média de peso vivo e na conversão alimentar (Ribeiro Filho, 1998).

Segundo alguns autores, a casca de café não deve ser utilizada como fonte única de alimento para os ruminantes, mas sim como fonte de fibras associada com outros alimentos, devido à baixa digestibilidade de seus nutrientes (Rogerson, 1974 e Minardi et al., 1991).

Quanto ao pergaminho do café se desconhece a sua utilização na alimentação de animais e, considerando que sua análise química mostra uma composição muito pobre em proteína, seu descarte estaria justificado.
Possivelmente, a fração orgânica que limita seu uso é o seu alto teor de fibra bruta, porém, em geral, este subproduto é comparável a casca de algodão, no que diz respeito a outros componentes orgânicos. Supondo que o uso deste material seja viável, não se deve descartar a hipótese de tratá-lo com soluções alcalinas, visando aumentar sua utilização pelos ruminantes (Bressani, Estrada e Jarquin, 1972). Entretanto, a escassez de ingredientes para elaborar rações em determinadas épocas do ano sugere a necessidade de se pesquisar o uso de materiais desta natureza na alimentação dos ruminantes (Jarquim et al., 1974).

Em relação à casca sem pergaminho, conhecida como casca "melosa", pouco se conhece em relação ao seu valor nutritivo, porém é certo que tem um material rico em fibras e com um teor de proteína bruta em torno de 11,0%, maior, portanto, que a espiga do milho com palha e sabugo com 7,8% de PB (Campos, 1980), palha de soja com 7,5% de PB (Prates e Leboute, 1980) e a casca de amendoim com 6,3% de PB (Zeoula, Ezequiel e Albuquerque, 1981), o que é um indicativo de que este material deve ser estudado com o objetivo de ser aproveitado como alternativa na alimentação dos animais ruminantes, quando as condições de preço do produto assim o permitirem.

2.2 Composição química da casca do grão de café

Resultados de várias análises da composição química da polpa e da casca de café têm mostrado valores semelhantes, podendo-se considerar a equivalência entre os nutrientes contidos nestes dois resíduos (Teixeira, 1995).

2.2.1 Conteúdo de matéria seca (MS) e proteína bruta (PB)

Bressani, Estrada e Jarquin (1972), estudando a composição química e o conteúdo de aminoácidos da proteína da polpa de café, compararam com o
milho e observaram que a polpa de café apresentou 87,4% de MS e 11,2% de PB e o milho 89,4% de MS e 9,4% de PB. Neste mesmo estudo, os autores compararam a composição química do pergaminho do grão de café com a casca de algodão e observaram teores de 92,8% de MS e 2,4% de PB para o pergaminho e 89,6% de MS e 3,6% de PB para a casca de algodão.

Fialho, Lima e Oliveira (1993) utilizando casca de café em dietas de crescimento e terminação para suínos, observaram valores de 87,9% de MS e 9,4% de PB. Leitão (1995), avaliando o valor nutritivo de casca de café pura e tratada com hidróxido de sódio ou uréia, observou valores de 83,5% para a MS e 9,5% de PB para a casca de café pura.

Furusahi (1995), verificando o efeito de utilização da casca de café in natura e tratada quimicamente com uréia sem armazenamento, observou na composição bromatológica da casca in natura 81,5% de MS e 8,9% de PB.

Teixeira et al. (1997) utilizando casca de café e casquinha de algodão em ensaio de degradabilidade ruminal determinaram, para a casca de café, os valores de 93,4% de MS e 7,65% de PB e, para a casquinha de algodão, 93,9% de MS e 6,33% de PB.

Estas variações nos teores de MS e PB para a casca de café possivelmente ocorreram devido ao não fracionamento destas cascas. Quanto maior a presença de pergaminho, maiores são os valores de MS e menores os valores de PB.

2.2.2 Conteúdo de fibra em detergente neutro (FDN) e fibra em detergente ácido (FDA)

Em um ensaio com suínos em crescimento e terminação de café nas dietas, Fialho, Lima e Oliveira (1993) observaram que o valor de fibra em detergente neutro (FDN) foi de 62,1%. Leitão (1995), em seus estudos...
sobre o valor nutritivo da casca de café pura ou tratada com hidróxido de sódio ou uréia, determinou pata a casca de café pura 55,8% de FDN.

Furusho (1995), avaliando o desempenho de cordeiros em confinamento e utilizando casca de café in natura e tratada quimicamente com uréia sem armazenamento, determinou, para a casca de café in natura, teores de 70,5 1% de FDN e 55,14% de FDA.

Teixeira et al. (1997), utilizando casca de café com alto teor de FDN para avaliar a influência em alimentos volumosos da sequência e tempo de incubação sobre a degradabilidade ruminal da MS, PB e FDN, observaram o valor de 85,16% de FDN para a casca de café.

23. Técnica da degradabilidade in situ

Existem diferentes métodos para medir a degradabilidade das proteínas dietéticas e entre estes citam-se: o método de determinação in vivo, o método in vitro e o método in situ. O método in vivo requer um longo tempo e apresenta custo bastante elevado, o que impede que seja usado rotineiramente (Valadares Filho et al., 1990). Um fator importante com relação aos dados de degradabilidade da proteína (DGPB) obtidos in vivo é que estes consideram a espécie animal, a dieta basal e o nível de consumo (NRC, 1985). O método in vitro possui a desvantagem de não conseguir reproduzir as condições de movimentação do alimento e pH do ambiente como o método in situ (Mertens, 1993). A técnica in situ com sacos de náilon proposta por Mehrez e Orskov (1979) é um método relativamente rápido e econômico e a taxa de degradação dos vários constituintes do alimento no rúmen é facilmente determinada, sendo a degradação dos diferentes componentes dos alimentos, calculada pela diferença entre as quantidades incubadas e os resíduos.

Com a técnica in situ mede-se o desaparecimento dos componentes dos
alimentos após serem incubados no rúmen durante diferentes períodos, assumindo que esse desaparecimento é sinônimo de degradação. Uma das principais limitações é os alimentos não são submetidos à mastigação, à ruminação e passagem pelo trato digestivo (Nocek, 1988).

Algumas fatores como a porosidade do saco de náilon, tamanho de partículas da amostra do alimento, quantidade de amostra por área livre de saco, tempo e sequência de incubação influenciam os resultados de degradabilidade.

Nos trabalhos realizados nos últimos anos por pesquisadores brasileiros já pode ser notada uma uniformização na metodologia utilizada, em especial com relação à porosidade dos sacos (Teixeira et al., 1997). A porosidade adequada é aquela que permite o fluxo de fluido ruminal associado a entrada de população microbiana que irá atuar sobre a degradação do alimento e, ao mesmo tempo, evite o refluxo de partículas indegradáveis (Nocek, 1988).

Teixeira et al. (1997), comparando a porosidade de diferentes tipos de sacos de náilon (32, 52, 105 e 225 micras) com resultados obtidos em experimentos anteriores, utilizando sacos com porosidade de 50 micras mostraram que a medida em que se aumenta o tamanho dos poros, ocorre um aumento nos valores para a degradabilidade efetiva do alimento.

Quanto ao tamanho de partículas, Nocek (1988) afirma que a moagem aumenta a superfície por unidade de peso da amostra acessível aos microorganismos e a uniformidade da moagem reflete em menores variações na taxa de degradação, porém, estão mais sujeitos a maiores perdas mecânicas, resultando em taxas de degradação que podem não ser reais.

A quantidade ideal de amostra a ser incubada deve fornecer resíduos suficientes após a degradação para a execução das análises químicas desejadas.
Excesso de amostra prejudica a degradabilidade das frações estudadas devido à compactação do material dentro do saco, impedindo o fluxo adequado do fluido ruminal reduzindo o contato entre as partículas do alimento e os microorganismos ruminais (Nocek, 1988). Esse autor recomenda que a quantidade de amostra por área do saco esteja situada entre 10 e 20 mg/cm².

O tempo necessário para a degradação completa varia de acordo com o material a ser incubado e, por isso, os tempos intermediários também devem variar. Nos ensaios de degradação in situ, geralmente são usados 6 ou 7 tempos de incubação. Para concentrados, o tempo máximo requerido é de 48 horas, sendo 3 ou 4 tempos até 12 horas, e para forragens o tempo máximo poderá ser de 72 ou 96 horas (Nocek, 1988 e Petit, Rioux e Tremblay, 1994).

Thiago (1994) recomenda, para avaliação de forragens, que o tempo máximo de permanência no rúmen seja de 96 horas e que nas primeiras 24 horas os tempos de incubação sejam menores, o que permite uma melhor definição da curva de degradação. Este mesmo autor cita os seguintes tempos: 1, 2, 3, 6, 12, 24, 48, 72 e 96 horas.

Nocek (1985), comparando os efeitos entre a colocação simultânea de todos os sacos no rúmen com a retirada nos determinados intervalos de tempo, e a colocação dos sacos em ordem reversa com a retirada ocorrendo de uma só vez, observou menor taxa de desaparecimento de nitrogênio e matéria seca para o farelo de soja quando os sacos foram retirados a cada tempo de incubação.

O autor justifica que a retirada dos sacos a cada intervalo de tempo expõe os outros sacos que serão retirados mais tarde, interrompendo a fermentação. Além disso, a lavagem parcelada após a retirada pode aumentar as variações quando comparadas com a lavagem simultânea.

Teixeira et al. (1997), avaliando a sequência e tempo de incubação de sacos de náilon no rúmen e seus efeitos na degradabilidade da matéria seca, proteína bruta e fibra em detergente neutro, não encontraram diferenças
significativas nas degradabilidades quando os sacos foram introduzidos e removidos em tempos diferentes em comparação com a situação em que os sacos introduzidos em tempos diferentes e removidos simultaneamente,

2.4 Degradabilidade ruminal da casca do grão de café

Furusbo (1995), estudando a degradabilidade potencial e efetiva da matéria seca, proteína bruta e fibra em detergente neutro da casca integral de café tratada e não tratada com uréia em vacas holandesas, determinou, para a casca de café pura, valores para a fração solúvel da MS de 11,68%, para a degradabilidade potencial 50,34% e 24,74% de degradabilidade efetiva para a matéria seca. Para a fração solúvel da PB observou o valor de 8,9%, para a degradabilidade potencial 88,51% e 38,62% de degradabilidade efetiva para a proteína bruta e para a degradabilidade potencial da FDN observou o valor de 30,71% e 9,12% de degradabilidade efetiva para a fibra em detergente neutro, para a casca integral de café.

Teixeira et al. (1995) obtiveram valores de degradabilidade efetiva semelhantes para a casca de café: 29,8% para a matéria seca, 40% para a proteína bruta e 34% para a fibra em detergente neutro, atribuindo os valores relativamente baixos às prováveis interferências do alto teor de lignina e taninos presentes na casca de café.

Teixeira et al. (1997) avaliando a influência da sequência e tempo de incubação dos sacos de náilon no rumen sobre a degradabilidade ruminal, observaram para a fração solúvel da matéria seca da casca de café 26,65%; para a fração solúvel da proteína bruta 31,46% e para a fração solúvel da FDN 34,66%. Para as degradabilidades potenciais da matéria seca, proteína bruta e
fibra em detergente neutro da casca de café determinaram os valores de 53,9%, 69,32% e 67,02%, respectivamente.

Para as degradabilidades efetivas, os valores observados foram: 53,5% para a matéria seca; 68,6% para a proteína bruta e 66,6% para a fibra em detergente neutro.

Ribeiro Filho (1998), avaliando a degradabilidade in situ da matéria seca, proteína bruta e fibra em detergente neutro da casca de café de dietas com diferentes níveis de substituição do milho desintegrado palha e sabugo, por casca de café (0, 10, 20, 30 e 40%), determinou os seguintes valores: para a fração solúvel da matéria seca, 30,23%; para a degradabilidade potencial da MS, 51,43% e para a degradabilidade efetiva da MS, 39,05%. Para a degradabilidade potencial, 80,78% e 66,02% de degradabilidade efetiva para a PB e para a fibra em detergente neutro, 40,51% de degradabilidade potencial e 27,30% de degradabilidade efetiva.

3 Material e métodos

3.1 Local e fatores climáticos

O experimento foi conduzido no Laboratório de Nutrição Animal do Departamento de Zootecnia da Universidade Federal de Lavras - UFLA.

O município de Lavras situa-se ao sul do estado de Minas Gerais, a 21º14' de latitude sul e 45º00' de longitude oeste de Greenwich, numa altitude de 910 m (Castro Neto, Sediyama e Vilela, 1980).

O índice de precipitação pluviométrica de 1997 foi de 1.679,8 mm. A temperatura mínima no período do experimento foi de 10,3°C e a máxima de 27,9°C (dados fornecidos pelo Setor de Agrometeorologia do Departamento de Engenharia da UFLA).
3.2 Período experimental

O experimento de degradabilidade foi realizado no período de 4 a 23 de julho de 1997, totalizando 20 dias. Os primeiros quinze dias foram destinados à adaptação da população dos microorganismos ruminais dos animais fistulados à fermentação da casca de café e os dias restantes foram destinados às incubações.

3.3 Animais experimentais, manejo e alimentação

Foram utilizadas duas vacas não lactantes da raça Jersey, providas de cânula ruminal, com peso médio de 380 kg.

Durante o experimento, os animais foram mantidos em um curral com aproximadamente 150m², onde recebiam 3,0 kg de concentrado/cabeça/dia; 12,0 kg de capim napier picado/cabeça/dia; 6,0 kg de cana picada/cabeça/dia e 1,6 kg de casca de café/cabeça/dia, fornecidos duas vezes ao dia. A composição química da casca de café, do capim napier e do concentrado utilizados no experimento, encontra-se na Tabela 01. A composição percentual dos ingredientes do concentrado encontra-se na Tabela 02.

TABELA 01: Composição química na matéria seca da casca de café, capim napier e concentrado utilizados no experimento

<table>
<thead>
<tr>
<th>ALIMENTO</th>
<th>MS (%)</th>
<th>PB (%)</th>
<th>FDN (%)</th>
<th>FDA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casca de café</td>
<td>94,83</td>
<td>10,11</td>
<td>71,60</td>
<td>67,00</td>
</tr>
<tr>
<td>Capim Napier</td>
<td>28,06</td>
<td>4,50</td>
<td>83,21</td>
<td>54,76</td>
</tr>
<tr>
<td>Concentrado</td>
<td>86,71</td>
<td>15,92</td>
<td>85,64</td>
<td>22,46</td>
</tr>
</tbody>
</table>
TABELA 02: Composição percentual dos ingredientes usados no concentrado

<table>
<thead>
<tr>
<th>INGREDIENTES</th>
<th>PERCENTAGEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fubá de milho</td>
<td>77,0</td>
</tr>
<tr>
<td>Farelo de trigo</td>
<td>5,0</td>
</tr>
<tr>
<td>Farelo de algodão</td>
<td>16,0</td>
</tr>
<tr>
<td>Uréia</td>
<td>0,5</td>
</tr>
<tr>
<td>Suplemento mineral</td>
<td>0,5</td>
</tr>
<tr>
<td>Sal</td>
<td>1,0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100,0</td>
</tr>
</tbody>
</table>

A casca de café foi fornecida juntamente com o concentrado, em primeiro lugar, para que se tivesse um controle sobre a ingestão total da casca de café. Depois eram fornecidos o capim e a cana picados. Os animais tinham livre acesso à água e sal mineralizado.

3.4 Obtenção do material estudado, preparo e condução do experimento

As cascas de café foram cedidas por produtores da região de Lavras, MG e foram obtidas de beneficiamento do café em "coco" por via seca.

Após o beneficiamento do café realizado por beneficiadores comerciais é possível se obter duas frações distintas da casca. Uma das porções é constituída basicamente de pergaminho, que é a fração mais leve, e a outra é constituída pela fração conhecida por casca "melosa", com pequenas quantidades de pergaminho.
Para que fossem obtidas cascas com menor quantidade de pergaminho possível foi utilizado um separador de sementes de arroz, que separou, através de fluxo de ar, o restante do pergaminho da casca "melosa".

Foram obtidas então, desta maneira, as três frações da casca de café: a casca integral, a casca "melosa" e o pergaminho do grão de café.

As frações casca integral, a casca "melosa" e o pergaminho foram colocadas em estufa com ventilação forçada a 65°C por 48 horas. Procedeu-se então a uma moagem utilizando-se uma peneira de 2,0 mm.

Para o experimento foi utilizada a técnica de degradabilidade in situ, por meio do uso de sacos de náilon incubados no rúmen. Os sacos mediam 12 x 9 cm e a porosidade média foi de 55 μ. As laterais dos sacos foram fechadas a quente com máquina seladora apropriada.

Os sacos vazios foram colocados em estufa com ventilação forçada a 65°C por 24 horas, sendo resfriados em dessecador e pesados.

De acordo com a relação quantidade de amostra por tamanho de bolsa (10-20 mg/cm²) citada por Nocek (1988), amostras de 4,0 gramas de cada fração da casca de café por cultivar foram pesadas, colocadas nos sacos e seladas.

Os sacos foram colocados em uma sacola de filó, medindo 15 x 25 cm, com um peso de chumbo de aproximadamente 120 gramas. A sacola foi então amarrada com um fio de náilon de 1 metro de comprimento livre e, posteriormente, incubada na região do saco ventral do rúmen.

Os tempos de incubação utilizados foram os seguintes: 0; 1,5; 3,0; 4,5; 6,0; 12,0; 24,0; 48,0 e 96,0 horas.

Nos intervalos de 6,0; 12,0; 24,0, 48,0 e 96,0 horas foram incubados 27 sacos/intervalo/animal, sendo três sacos para cada fração da casca de café por cultivar.

Devido a pequena disponibilidade de casca de café por ocasião da elaboração inicial do trabalho, optou-se para que nos intervalos de 0; 1,5, 3,0 e
4,5 horas foram incubados dois sacos para cada fração da casca de café por cultivar, totalizando 18 sacos/intervalo/animal.

A sequência de incubação foi do maior para o menor intervalo, com a retirada simultânea de todos os sacos. Após a retirada dos sacos do rúmen, os mesmos foram colocados imediatamente em resfriador para que ocorresse a paralisação da fermentação.

Os sacos de náilon contendo as amostras foram então lavados em máquina apropriada, com agitação e fluxo de água constantes. O ponto final de lavagem era considerado ideal quando a água estivesse levemente turva. Em seguida, os sacos foram colocados em estufa com ventilação forçada a 65°C por 48 horas, resfriados em dessecador e pesados.

Os sacos referentes ao tempo zero foram introduzidos no rúmen e retirados imediatamente, recebendo, então, o mesmo procedimento dos demais sacos. Estes sacos foram usados para determinar a fração prontamente solúvel.

3.5 Análises laboratoriais

As análises laboratoriais foram realizadas no Laboratório de Nutrição Animal do Departamento de Zootecnia da Universidade Federal de Lavras - UFLA, sendo determinados os valores de matéria seca (MS) a 105°C, proteína bruta (PB) pela dosagem do nitrogênio total conforme método de Kjeldahl (AOAC, 1970), fibra em detergente neutro (FDN) e fibra em detergente ácido (FDA), segundo Van Soest (1967), para cada tratamento, no material original e no material remanescente nos sacos após a incubação.
3.6 Avaliação estatística

Os dados obtidos para a degradabilidade da matéria seca, proteína bruta, fibra em detergente neutro e fibra em detergente ácido, nos diferentes tempos de incubação, foram ajustados para uma regressão não linear pelo método de Gauss-Newton (Neter, Wasserman e Kutner, 1985), contido no pacote computacional SAEG (Sistema de Análise Estatística e Genética) descrito por Euclides (1983), de acordo com a equação proposta por Orskov e Mc Donald (1979), considerando-se a taxa de passagem (k) da digesta para o duodeno de 5% /h (k = 0,05), em que:

\[DP = a + b \left(1 - e^{-ct} \right), \]

sendo:

- \(DP \) = degradabilidade máxima (potencial) alcançada pelo alimento no tempo "t"
- \(a \) = fração solúvel (%)
- \(b \) = fração potencialmente degradável (degradação do material que permanece no saco após desaparecimento da fração solúvel)
- \(c \) = taxa de degradação
- \(t \) = tempo de incubação

A degradabilidade efetiva (DE), segundo Orskov e Mc Donald (1979), é uma estimativa da fração de nutrientes que é realmente degradada no rúmen e leva em conta o percurso normal do alimento pelo trato gastrointesntal, sendo estimada pela seguinte fórmula:

\[DE = a + \frac{(bxc)}{(c+k)} \]
4 Resultados e discussões

4.1 Composição percentual dos constituintes da casca do grão de café

Conforme Tabela 03, os multados mostram que os percentuais da casca “melosa” dos cultivares Mundo Novo e Rubi são ligeiramente superiores ao do cultivar Catuai. Esta diferença pode ser devida a presença de açúcares na casca de café dos cultivares Mundo Novo e Rubi que ainda não tinham sido perdidos por ocasião do seu armazenamento.

TABELA 03: Composição percentual média em pergaminho, casca "melosa" e casca integral dos cultivares utilizados no experimento

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Pergaminho (%)</th>
<th>Casca melosa (%)</th>
<th>Casca Integral (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catuai</td>
<td>38,8</td>
<td>61,2</td>
<td>100,0</td>
</tr>
<tr>
<td>Mundo Novo</td>
<td>28,5</td>
<td>71,5</td>
<td>100,0</td>
</tr>
<tr>
<td>Rubi</td>
<td>29,8</td>
<td>70,2</td>
<td>100,0</td>
</tr>
<tr>
<td>MEDIA</td>
<td>32,4</td>
<td>67,6</td>
<td>100,0</td>
</tr>
</tbody>
</table>

De acordo com Vegro (1997), com uma produção estimada de 28 milhões de sacas do produto beneficiado, o volume de cascas residuais gerado possibilita a obtenção de aproximadamente 19,6 milhões de sacas da casca "melosa", que poderiam ser utilizadas na alimentação dos ruminantes. O restante, que o pergaminho, poderia ser utilizado como substrato para cama de animais, como adubo orgânico ou ainda poderia, dependendo custo, receber um tratamento com soluções alcalinas, melhorando seu aproveitamento pelo sistema ruminal.
4.2 Composição química

A composição química das diferentes frações da casca do grão de café utilizadas no experimento, está apresentada na Tabela 04.

<table>
<thead>
<tr>
<th>Frações</th>
<th>Cultivar</th>
<th>MS (%)</th>
<th>PB (%)</th>
<th>FDN (%)</th>
<th>FDA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casca</td>
<td>Catuai</td>
<td>94,83</td>
<td>10,11</td>
<td>71,60</td>
<td>67,00</td>
</tr>
<tr>
<td>Integral</td>
<td>M. Novo</td>
<td>95,17</td>
<td>9,66</td>
<td>58,71</td>
<td>55,54</td>
</tr>
<tr>
<td></td>
<td>Rubi</td>
<td>95,71</td>
<td>10,01</td>
<td>70,12</td>
<td>58,84</td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td>95,23</td>
<td>9,92</td>
<td>66,81</td>
<td>60,46</td>
</tr>
<tr>
<td>Casca</td>
<td>Catuai</td>
<td>95,86</td>
<td>13,99</td>
<td>64,88</td>
<td>61,25</td>
</tr>
<tr>
<td>Melosa</td>
<td>M. Novo</td>
<td>91,73</td>
<td>12,12</td>
<td>47,66</td>
<td>42,66</td>
</tr>
<tr>
<td></td>
<td>Rubi</td>
<td>90,38</td>
<td>12,73</td>
<td>58,46</td>
<td>54,39</td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td>92,65</td>
<td>12,94</td>
<td>57,00</td>
<td>52,76</td>
</tr>
<tr>
<td>Pergaminho</td>
<td>Catuai</td>
<td>96,52</td>
<td>4,76</td>
<td>89,39</td>
<td>79,12</td>
</tr>
<tr>
<td></td>
<td>M. Novo</td>
<td>97,27</td>
<td>7,88</td>
<td>75,70</td>
<td>62,38</td>
</tr>
<tr>
<td></td>
<td>Rubi</td>
<td>97,17</td>
<td>7,10</td>
<td>85,70</td>
<td>80,88</td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td>96,98</td>
<td>6,58</td>
<td>83,59</td>
<td>74,12</td>
</tr>
</tbody>
</table>
4.2.1 Conteúdo de matéria seca (MS) e proteína bruta (PB)

Verifica-se que as frações da casca de café possuem altos teores de matéria seca, tendo os mesmos variado de 90,38% a 97,27%. Os resultados encontrados para a matéria seca da casca de café assemelham-se aos valores determinados por Teixeira et al. (1997), possivelmente devido à fração da casca de café ser de casca integral. Ainda em relação à matéria seca verifica-se que a casca “melosa” do cultivar Catuai, apresenta um valor de 4,1% e 5,5% maior que ao dos cultivares Mundo Novo e Rubi, respectivamente, possivelmente devido ao material deste cultivar ser de uma safra anterior e estar ligeiramente mais seco.

O teor de proteína bruta (PB) para o pergaminho do café do cultivar Catuai foi de 4,76%, maior que o valor determinado por Bressani, Estrada e Jarquin (1972), que foi em torno de 2,40%.

Para a casca integral os teores de PB variaram de 9,7 a 10,1%, bem próximos aos valores encontrados na literatura revisada.

Os teores de proteína bruta encontrados em cada fração dos três cultivares estudados apresentaram comportamento bastante semelhante, ou seja, a casca “melosa” sempre apresentou os mais altos teores de proteína bruta, que variaram de 12,1 a 13,9%, independente do cultivar. Porém, o teor de proteína bruta do pergaminho do cultivar Catuai apresentou um valor inferior aos demais cultivares, possivelmente devido a uma menor presença de casca “melosa” na amostra.

Os multados da composição química permitem inferir que grandes quantidades ou a presença de pergaminho na casca integral de café pode prejudicar o uso da casca integral em relação ao uso somente da casca “melosa” na alimentação animal.
4.2.2 Conteúdo de fibra em detergente neutro (FDN) e fibra em detergente ácido (FDA)

Conforme mostrado na Tabela 04, os teores de FDN são bastante variáveis para as diferentes frações da casca de café, sendo que o cultivar Mundo Novo apresentou os menores valores de FDN para a casca íntegra, casca "melosa" e pergaminho, que foram de, 58,71%, 47,66% e 75,7%, respectivamente.

Segundo Mertens (1993), a FDN é o componente que melhor representa os constituintes de baixa degradação da dieta e o que mais se aproxima dos valores do conteúdo da parede celular. O teor de FDN da casca integral do cultivar Mundo Novo foi 16,3% e 18,0% menor que ao dos cultivares Rubi e Catuai, respectivamente. A casca "melosa" do cultivar Catuai apresentou um teor de 61,25% de FDN, bem próximo ao valor encontrado por Fialho, Lima e Oliveira (1993), que foi de 62,1%. O pergaminho dos cultivares Catuai e Rubi apresentaram, respectivamente, 89,39% e 85,70% de FDN, valores estes próximos aos valores encontrados por Teixeira et al. (1997), que foi de 85,16%, caracterizando um grande conteúdo de parede celular.

A tendência observada para os tares de FDN para a casca integral, casca "melosa" e pergaminho também foi idêntica para os teores de FDA das frações analisadas. A casca "melosa" sempre apresentou os multados de FDA mais baixos que as outras frações.

Outra constatação importante é de que, para maiores valores encontrados de FDA observam-se menores valores no teor de proteína bruta, conforme mostrado na Tabela 04, sugerindo que a proteína que permanece ligada a FDA escapa da degradação em meio ácido, sem que ocorra absorção pelo organismo animal.

Os resultados de FDA para a casca integral dos cultivam Mundo Novo
e Rubi e o resultado de FDA encontrado para a casca "melosa" do cultivar Rubi estão de acordo com os resultados observados por Furusho (1995) e podem ser considerados elevados, o que pode ser um fator limitante da qualidade deste subproduto para uma eficiente utilização pelos animais ruminantes.

4.3 Degradabilidade da matéria seca (MS)

Os valores da fração solúvel (a), potencialmente degradável (b), taxa de degradação (c), degradabilidade potencial (DP), degradabilidade efetiva (DE) e coeficiente de determinação \(r^2 \) para a matéria seca (MS) das diferentes frações da casca de café, encontram-se na Tabela 05.

A fração solúvel (a) para a matéria seca (MS) encontrada na fração casca integral do cultivar Catuai foi ligeiramente superior ao valor observado por Furusho (1995) em seu tratamento controle, em um ensaio que verificou o efeito de tratamento da casca de café com ureia, que foi de 11,68%, sem especificar o cultivar utilizado.

A fração solúvel (a) para a MS do cultivar Rubi encontrada na fração casca integral foi de 27,19%, bastante semelhante ao observado por Teixeira et al. (1997) em um ensaio que verificou a sequência e o tempo de incubação dos sacos de náilon no rumen, testando a casca de café como alimento, que foi de 26,65%.

O cultivar Mundo Novo foi o que apresentou os valores mais altos da fração solúvel (a) para a MS, sendo que a casca "melosa" chegou ao valor de 52,74%, considerado bastante elevado se comparado às diferentes frações dos outros cultivares. Possivelmente, uma fração solúvel (a) com dores tão altos pode ter ocorrido devido a maiores perdas mecânicas por ocasião da lavagem dos sacos ou ainda este cultivar pode apresentar em sua composição algum componente não estudado neste ensaio o qual teria aumentado o número e a
atividade dos microorganismos ruminais, com conseqüente acréscimo da taxa de desaparecimento da matéria seca.

TABELA 05: Valores da fração solúvel (a), potencialmente degradável (b), taxa de degradação(c), degradabilidade potencial (DP), degradabilidade efetiva (DE) e coeficiente de determinação (r^2), para a MS das diferentes frações da casca do grão de café dos cultivares Catuai, Mundo Novo e Rubi

<table>
<thead>
<tr>
<th>Fração</th>
<th>Cultivar</th>
<th>a (%)</th>
<th>b (%)</th>
<th>c (%)</th>
<th>DP</th>
<th>DE (%)</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casca</td>
<td>Catuai</td>
<td>19,56</td>
<td>34,00</td>
<td>0,043</td>
<td>53,56</td>
<td>35,28</td>
<td>0,99</td>
</tr>
<tr>
<td>Integral</td>
<td>M. Novo</td>
<td>33,62</td>
<td>25,08</td>
<td>0,038</td>
<td>58,70</td>
<td>44,89</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>Rubi</td>
<td>27,19</td>
<td>32,37</td>
<td>0,032</td>
<td>59,56</td>
<td>39,82</td>
<td>0,99</td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td>26,79</td>
<td>30,48</td>
<td>0,037</td>
<td>57,27</td>
<td>39,99</td>
<td></td>
</tr>
<tr>
<td>Casca</td>
<td>Catuai</td>
<td>24,63</td>
<td>52,09</td>
<td>0,027</td>
<td>76,72</td>
<td>42,89</td>
<td>0,99</td>
</tr>
<tr>
<td>Melosa</td>
<td>M. Novo</td>
<td>52,74</td>
<td>29,56</td>
<td>0,041</td>
<td>82,30</td>
<td>66,06</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>Rubi</td>
<td>39,43</td>
<td>43,92</td>
<td>0,023</td>
<td>83,35</td>
<td>53,27</td>
<td>0,97</td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td>38,93</td>
<td>45,19</td>
<td>0,030</td>
<td>80,85</td>
<td>54,07</td>
<td></td>
</tr>
<tr>
<td>Pergaminho</td>
<td>Catuai</td>
<td>10,98</td>
<td>8,85</td>
<td>0,075</td>
<td>19,83</td>
<td>16,29</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td>M. Novo</td>
<td>23,39</td>
<td>18,85</td>
<td>0,041</td>
<td>42,24</td>
<td>31,88</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>Rubi</td>
<td>13,50</td>
<td>15,42</td>
<td>0,040</td>
<td>28,92</td>
<td>20,35</td>
<td>0,99</td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td>15,95</td>
<td>14,37</td>
<td>0,052</td>
<td>30,33</td>
<td>22,84</td>
<td></td>
</tr>
</tbody>
</table>
A degradabilidade efetiva para MS na casca integral dos três cultivares foi superior a valores encontrados por Furusho (1995). O valor observado de degradabilidade efetiva para a MS na casca integral do cultivar Rubi foi de 39,82%, muito semelhante ao valor observado por Ribeiro Filho (1998), que foi de 39,05%.

A degradabilidade efetiva para a MS na casca integral do cultivar Mundo Novo encontrada foi de 44,45%, menor que o valor observado por Teixeira et al. (1997), que foi de 53,5%.

A Figura 01 mostra a curva de degradabilidade estimada para a matéria seca da casca integral, da casca "melosa" e do pergaminho do grão de café, do cultivar Catuai, em função dos tempos de incubação.
O valor encontrado para a degradabilidade potencial para a MS da casca integral do cultivar Catuai foi de 53,56%, bastante semelhante aos valores observados por Furusho (1995) que foi de 50,34%, Teixeira et al. (1997), de 53,9% e Ribeira Filho (1998), de 51,43%.

A degradabilidade potencial para a MS da casca "melosa" do cultivar Catuai apresentou um valor diferente dos que foram encontrados por Furusho (1995), Teixeira et al. (1997) e Ribeiro Filho (1998), provavelmente devido a casca "melosa" ter em seu interior pequenas quantidades de pergaminho e estes autores terem trabalhado com a casca integral do grão de café.

Em relação a degradabilidade potencial e a degradabilidade efetiva do pergaminho da casca de café, o resultado mostra que esta fração possui um baixo aproveitamento pelos microorganismos ruminais, que pode ser devido ao alto teor de material lignificado presente no pergaminho.

A Figura 02, mostra a curva de degradabilidade estimada para a matéria seca da casca integral, da casca "melosa" e do pergaminho do grão de café, do cultivar Mundo Novo, em função dos tempos de incubação.

O cultivar Mundo Novo apresentou valores de degradabilidade potencial e efetiva para a MS da casca "melosa" bastante elevados, se comparados com outros subprodutos já utilizados na alimentação animal, o que demonstra o potencial da casca "melosa" como um bom alimento para os animais ruminantes.
A baixa degradabilidade potencial e efetiva para a MS do pergaminho deste cultivar sugere que algum tratamento químico neste material pode vir a melhorar o aproveitamento deste material pelas ruminantes, já que o pergaminho representa em tomo de 30% do total da casca de café.

A Figura 03, mostra a curva de degradabilidade estimada para a matéria seca da casca integral, da casca "melosa" e do pergaminho do grão de café, do cultivar Rubi, em função dos tempos de incubação.
A casca "melosa" do cultivar Rubi apresentou d o r e s d e degradabilidade potencial e efetiva para a MS considerados, da mesma forma que o cultivar Mundo Novo, ou seja, a casca "melosa" do cultivar Rubi também pode ser bem aproveitada pelos microorganismos ruminais.

4.4 Degradabilidade da proteína bruta (PB)

Os valores da fração solúvel (a), potencialmente degradável (b) taxa de degradação (c), degradabilidade potencial (DP), degradabilidade efetiva (DE) e coeficiente de determinação (r^2), para proteína bruta (PB) das diferentes frações da casca de café encontram-se na Tabela 06.

A fração solúvel (a) para PB dos cultivares estudados apresentaram multados bastante semelhantes, com alguma superioridade do cultivar Mundo.
TABELA 06: Valores da fração solável (a), potencialmente degradável (b) taxa de degradação (c), degradabilidade potencial (DP), degradabilidade efetiva (DE) e coeficiente de determinação (r^2) para a PB das diferentes frações da casca de café dos cultivares Catuai, Mundo Novo e Rubi.

<table>
<thead>
<tr>
<th>Fração</th>
<th>Cultivar</th>
<th>a (%)</th>
<th>b (%)</th>
<th>c (%)</th>
<th>DP (%)</th>
<th>DE (%)</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casca</td>
<td>Catuai</td>
<td>41,24</td>
<td>31,24</td>
<td>0,045</td>
<td>72,48</td>
<td>56,04</td>
<td>0,90</td>
</tr>
<tr>
<td></td>
<td>M. Novo</td>
<td>59,79</td>
<td>27,64</td>
<td>0,029</td>
<td>87,43</td>
<td>69,94</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td>Rubi</td>
<td>44,19</td>
<td>35,24</td>
<td>0,052</td>
<td>79,43</td>
<td>57,94</td>
<td>0,98</td>
</tr>
<tr>
<td>Integral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td>48,40</td>
<td>31,37</td>
<td>0,035</td>
<td>79,78</td>
<td>61,30</td>
<td></td>
</tr>
<tr>
<td>Casca</td>
<td>Catuai</td>
<td>42,56</td>
<td>34,23</td>
<td>0,025</td>
<td>76,79</td>
<td>53,97</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>M. Novo</td>
<td>65,46</td>
<td>28,16</td>
<td>0,031</td>
<td>93,62</td>
<td>76,24</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>Rubi</td>
<td>48,09</td>
<td>35,71</td>
<td>0,039</td>
<td>85,30</td>
<td>64,39</td>
<td>0,99</td>
</tr>
<tr>
<td>Melosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td>52,03</td>
<td>32,70</td>
<td>0,031</td>
<td>85,23</td>
<td>64,86</td>
<td></td>
</tr>
<tr>
<td>Pergaminho</td>
<td>Catuai</td>
<td>43,25</td>
<td>25,17</td>
<td>0,036</td>
<td>68,42</td>
<td>53,78</td>
<td>0,94</td>
</tr>
<tr>
<td></td>
<td>M. Novo</td>
<td>52,85</td>
<td>25,45</td>
<td>0,068</td>
<td>78,30</td>
<td>67,52</td>
<td>0,96</td>
</tr>
<tr>
<td></td>
<td>Rubi</td>
<td>45,96</td>
<td>22,78</td>
<td>0,059</td>
<td>68,74</td>
<td>58,29</td>
<td>0,89</td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td>47,35</td>
<td>24,46</td>
<td>0,054</td>
<td>71,82</td>
<td>59,86</td>
<td></td>
</tr>
</tbody>
</table>

Novo em relação às demais. Ao que tudo indica, a fração solúvel (a) para a proteína bruta dos cultivares foi a variável que mais pode ter sido influenciada pelas perdas mecânicas ocorridas durante a lavagem dos sacos de náilon, com
dores de solubilidade initial bastante elevados, próximos aos observados por Ribeiro Filho (1998).

As Figuras 04, 05 e 06 mostram as curvas de degradabilidade estimada para a proteína bruta da casca integral, da casca "melosa" e do pergaminho do grão de café, dos cultivares Catuai, Mundo Novo e Rubi, em função dos tempos de incubação.

Os resultados observados no experimento estão de acordo com os resultados obtidos por Teixeira et al. (1997) e Ribeiro Filho (1998). Os valores encontrados de degradabilidade potencial e efetiva para PB são valores elevados e que demonstram o grande potencial da casca de café como alimento para os animais ruminantes.

Pode-se observar também que o cultivar Mundo Novo apresentou os maiores valores de degradabilidade potencial e efetiva para a proteína bruta, principalmente quando compomos suas diferentes frações. Tendo em vista os resultados obtidos, nota-se a clara superioridade da casca "melosa" em relação a casca integral e ao pergaminho, no que diz respeito ao aproveitamento destas frações pelos microorganismos ruminais.

Estes resultados podem demonstrar para os criadores que, através da separação das frações da casca de café, espeta-se obter diferentes desempenhos dos animais, devido ao melhor aproveitamento pelo animal da casca "melosa".
C + P → casca integral; C → casca "melosa" e P → pergaminho.

FIGURA 04: Degradabilidade estimada para a proteína bruta da casca integral, da casca "melosa" e do pergaminho do grão de café, do cultivar Catuai, em função dos tempos de incubação.
4.5 Degradabilidade da fibra em detergente neutro (FDN)

Os valores da fração solúvel (a), potencialmente degradável (b) taxa de degradação (c), degradabilidade potencial (DP), degradabilidade efetiva (DE) e coeficiente de determinação (r^2) para a fibra em detergente neutro (FDN) das diferentes frações da casca de café encontram-se na Tabela 07.

Os valores da fração solúvel (a) para a fibra em detergente neutro (FDN) mostraram-se na casca “melosa” do cultivar Mundo Novo um pouco elevados em relação à mesma fração dos cultivares Catuai e Rubi.

Possivelmente este efeito pode ter surgido também das perdas mecânicas sofridas pelo alimento no manuscio, por ocasião da lavagem dos sacos de náilon, após a retirada dos mesmos do nítem.
TABELA 07: Valores da fração solúvel (a), potencialmente degradável (b), taxa de degradação (c), degradabilidade potencial (DP), degradabilidade efetiva (DE) e coeficiente de determinação (r^2) para a fibra em detergente neutro (FDN) das diferentes frações da casca de café dos cultivares Catuai, Mundo Novo e Rubi

<table>
<thead>
<tr>
<th>Fração</th>
<th>Cultivar</th>
<th>a (%)</th>
<th>b (%)</th>
<th>c (%)</th>
<th>DP (%)</th>
<th>DE (%)</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casca</td>
<td>Catuai</td>
<td>4,82</td>
<td>35,62</td>
<td>0,034</td>
<td>40,44</td>
<td>19,24</td>
<td>0,98</td>
</tr>
<tr>
<td>Integral</td>
<td>M. Novo</td>
<td>2,46</td>
<td>32,83</td>
<td>0,023</td>
<td>35,29</td>
<td>12,80</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>Rubi</td>
<td>11,51</td>
<td>35,68</td>
<td>0,026</td>
<td>47,19</td>
<td>23,72</td>
<td>0,99</td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td>6,26</td>
<td>34,71</td>
<td>0,027</td>
<td>40,97</td>
<td>18,58</td>
<td></td>
</tr>
</tbody>
</table>

Casca	Catuai	2,67	67,15	0,025	69,82	25,05	0,99
Melosa	M. Novo	17,31	49,85	0,033	65,16	36,33	0,98
	Rubi	9,20	68,45	0,018	77,65	27,32	0,95
Média		9,72	61,15	0,025	70,87	29,56	

Pergaminho	Catuai	6,22	7,81	0,038	14,03	9,59	0,81
	M. Novo	10,55	17,10	0,031	27,65	17,09	0,98
	Rubi	8,35	13,43	0,033	21,78	13,69	0,97
Média		8,37	12,78	0,034	21,15	13,45	

A fração solúvel da parede celular em estudos de degradabilidade ruminal, segundo Pezo, citado por Furusho (1995), pode ser considerado como zero, o que indicaria um ataque inicial lento pelas bactérias ruminais, ou seja,
ocorrerá uma demora para o início da degradação da parede celular.

Os resultados observados para a fração solúvel (a) neste experimenta são maiores que os obtidos por Furusho (1995), possivelmente devido a natureza da casca de café. Portêm estão de acordo com os multados obtidos por Teixeira et al. (1997) e Ribeiro Filho (1998).

O cultivar Mundo Novo apresentou, para a casca "melosa", uma degradabilidade potencial para a fibra em detergente neutro bastante próxima a observada por Teixeira et al. (1997), que foi de 67,02%, porém a degradabilidade efetiva desta fração apresentou valores abaixo do encontrado por estes mesmos autores.

A casca integral da cultivar Catuai apresentou valor de degradabilidade potencial semelhante ao valor observado por Ribeiro Filho (1998), que foi de 40,51%.

A casca "melosa" do cultivar Rubi apresentou 77,65% de degradabilidade potencial, porém, apenas 27,32% de degradabilidade efetiva.

O pergaminho apresentou em todos os três cultivam um baixo índice de degradação potencial e efetiva, o que c ement toma esta fração um alimento de qualidade muito baixa para os animais ruminantes, pois as frações da parede celular do pergaminho sofrem pouca degradação pelos microorganismos ruminais.

As Figuras 07, 08 e 09, mostram as curvas de degradabilidade estimada para a fibra em detergente neutro, da casca integral, da casca "melosa" e do pergaminho do grão de café dos cultivares Catuai, Mundo Novo e Rubi.
C + P → casca integral; C → casca "melosa" e P → pergaminho

FIGURA 07: Degradabilidade estimada para a fibra em detergente neutro da casca integral, da casca "melosa" e do pergaminho, do grão de café, do cultivar Catuai, em função dos tempos de incubação.

C + P \(Y = 2,46 + 32,83 \times (1 - \exp(-0,023 \times t)) \) \(R^2 = 0,98 \)
C \(Y = 17,31 + 47,85 \times (1 - \exp(-0,033 \times t)) \) \(R^2 = 0,98 \)
P \(Y = 10,55 + 17,10 \times (1 - \exp(-0,031 \times t)) \) \(R^2 = 0,98 \)

C + P → casca integral; C → casca "melosa" e P → pergaminho

FIGURA 08: Degradabilidade estimada para a fibra em detergente neutro da casca integral, da casca "melosa" e do pergaminho do grão de café, do cultivar Mundo Novo, em função dos tempos de incubação.
4.6 Degradabilidade da fibra em detergente ácido (FDA)

Os valores da fração solúvel (a), potencialmente degradável (b), taxa de degradação (c), degradabilidade potencial (DP), degradabilidade efetiva (DE) e coeficiente de determinação (r^2) para a fibra em detergente ácido (FDA) das diferentes frações da casca de café encontram-se na Tabela 08.

Notou-se um comportamento bastante semelhante em relação aos valores da fração solúvel (a) dentro das frações de cada cultivar, ou seja, a casca integral, a casca "melosa" e o pergaminho, quando comparadas entre os cultivares, apresentaram resultados muito semelhantes. Novamente, a casca "melosa" obteve os maiores valores da fração solúvel (a).

Na literatura consultada não foram encontrados dados referentes a esta fração estudada.
TABELA 08: Valores da fração solúvel (a), potencialmente degradável (b), taxa de degradação (c), degradabilidade potencial (DP), degradabilidade efetiva (DE) e coeficiente de determinação (r^2) para a fibra em detergente ácido (FDA) das diferentes frações da casca de café dos cultivares Catuai, Mundo Novo e Rubi.

<table>
<thead>
<tr>
<th>Fração</th>
<th>Cultivar</th>
<th>a (%)</th>
<th>b (%)</th>
<th>c (%)</th>
<th>DP (%)</th>
<th>DE (%)</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casca</td>
<td>Catuai</td>
<td>11,37</td>
<td>30,80</td>
<td>0,036</td>
<td>42,17</td>
<td>24,28</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td>M. Novo</td>
<td>10,30</td>
<td>31,69</td>
<td>0,031</td>
<td>41,99</td>
<td>22,40</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td>Rubi</td>
<td>6,94</td>
<td>48,91</td>
<td>0,032</td>
<td>55,85</td>
<td>24,91</td>
<td>0,97</td>
</tr>
<tr>
<td>Integral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casca</td>
<td>Melosa</td>
<td>16,14</td>
<td>57,14</td>
<td>0,021</td>
<td>73,28</td>
<td>33,04</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>M. Novo</td>
<td>15,47</td>
<td>51,43</td>
<td>0,036</td>
<td>66,90</td>
<td>36,99</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>Rubi</td>
<td>15,09</td>
<td>57,07</td>
<td>0,026</td>
<td>72,16</td>
<td>34,56</td>
<td>0,97</td>
</tr>
<tr>
<td>Integral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casca</td>
<td>Pergaminho</td>
<td>9,31</td>
<td>10,71</td>
<td>0,026</td>
<td>20,02</td>
<td>12,99</td>
<td>0,96</td>
</tr>
<tr>
<td></td>
<td>M. Novo</td>
<td>13,54</td>
<td>22,25</td>
<td>0,03</td>
<td>35,79</td>
<td>22,34</td>
<td>0,96</td>
</tr>
<tr>
<td></td>
<td>Rubi</td>
<td>11,72</td>
<td>15,95</td>
<td>0,028</td>
<td>27,67</td>
<td>17,49</td>
<td>0,95</td>
</tr>
<tr>
<td>Integral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td>9,53</td>
<td>37,13</td>
<td>0,032</td>
<td>46,67</td>
<td>23,86</td>
<td></td>
</tr>
</tbody>
</table>

34
6 Referências bibliográficas

ANEXOS
TABELA 1A: Pontos para as curvas de degradabilidade estimada para a matéria seca das diferentes frações da casca de café dos cultivares Catuai, Mundo Novo e Rubi, em função dos tempos de incubação.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Fração</th>
<th>0,0</th>
<th>1,5</th>
<th>3,0</th>
<th>4,5</th>
<th>6,0</th>
<th>12,0</th>
<th>24,0</th>
<th>48,0</th>
<th>96,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catuai</td>
<td>casca integral</td>
<td>20,15</td>
<td>22,71</td>
<td>23,79</td>
<td>24,87</td>
<td>26,63</td>
<td>31,62</td>
<td>43,92</td>
<td>48,42</td>
<td>53,02</td>
</tr>
<tr>
<td></td>
<td>casca melosa</td>
<td>25,36</td>
<td>27,76</td>
<td>28,59</td>
<td>30,04</td>
<td>31,71</td>
<td>37,86</td>
<td>49,37</td>
<td>64,18</td>
<td>72,09</td>
</tr>
<tr>
<td></td>
<td>pergaminho</td>
<td>12,60</td>
<td>11,18</td>
<td>12,53</td>
<td>13,40</td>
<td>13,92</td>
<td>16,41</td>
<td>19,17</td>
<td>19,32</td>
<td>12,69</td>
</tr>
<tr>
<td>Mundo</td>
<td>casca integral</td>
<td>33,89</td>
<td>34,83</td>
<td>37,15</td>
<td>36,86</td>
<td>38,76</td>
<td>42,60</td>
<td>49,13</td>
<td>54,95</td>
<td>57,95</td>
</tr>
<tr>
<td>Novo</td>
<td>casca melosa</td>
<td>53,80</td>
<td>54,36</td>
<td>55,81</td>
<td>57,50</td>
<td>58,51</td>
<td>64,38</td>
<td>71,26</td>
<td>79,12</td>
<td>81,18</td>
</tr>
<tr>
<td></td>
<td>pergaminho</td>
<td>23,98</td>
<td>24,38</td>
<td>25,12</td>
<td>27,11</td>
<td>26,63</td>
<td>30,48</td>
<td>35,87</td>
<td>39,71</td>
<td>41,72</td>
</tr>
<tr>
<td>Rubi</td>
<td>casca integral</td>
<td>27,64</td>
<td>29,24</td>
<td>30,35</td>
<td>31,70</td>
<td>31,90</td>
<td>36,77</td>
<td>44,88</td>
<td>53,92</td>
<td>57,54</td>
</tr>
<tr>
<td></td>
<td>casca melosa</td>
<td>38,18</td>
<td>40,90</td>
<td>42,97</td>
<td>45,69</td>
<td>45,15</td>
<td>51,12</td>
<td>53,57</td>
<td>73,18</td>
<td>77,69</td>
</tr>
<tr>
<td></td>
<td>pergaminho</td>
<td>13,65</td>
<td>14,70</td>
<td>14,75</td>
<td>16,08</td>
<td>16,87</td>
<td>19,58</td>
<td>23,27</td>
<td>26,66</td>
<td>28,66</td>
</tr>
</tbody>
</table>

TABELA 2A: Pontos para as curvas de degradabilidade estimada para a proteína bruta das diferentes frações da casca de café dos cultivares Catuai, Mundo Novo e Rubi, em função dos tempos de incubação.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Fração</th>
<th>0,0</th>
<th>1,5</th>
<th>3,0</th>
<th>4,5</th>
<th>6,0</th>
<th>12,0</th>
<th>24,0</th>
<th>48,0</th>
<th>96,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catuai</td>
<td>casca integral</td>
<td>38,59</td>
<td>48,09</td>
<td>47,54</td>
<td>47,48</td>
<td>41,19</td>
<td>56,21</td>
<td>64,19</td>
<td>66,99</td>
<td>72,78</td>
</tr>
<tr>
<td></td>
<td>casca melosa</td>
<td>40,57</td>
<td>43,51</td>
<td>47,27</td>
<td>49,00</td>
<td>46,30</td>
<td>52,96</td>
<td>57,90</td>
<td>68,26</td>
<td>74,47</td>
</tr>
<tr>
<td></td>
<td>pergaminho</td>
<td>40,47</td>
<td>43,67</td>
<td>45,89</td>
<td>49,12</td>
<td>49,89</td>
<td>54,28</td>
<td>55,98</td>
<td>61,56</td>
<td>69,37</td>
</tr>
<tr>
<td>Mundo</td>
<td>casca integral</td>
<td>62,29</td>
<td>60,07</td>
<td>62,85</td>
<td>62,94</td>
<td>61,70</td>
<td>67,72</td>
<td>74,45</td>
<td>82,20</td>
<td>85,11</td>
</tr>
<tr>
<td>Novo</td>
<td>casca melosa</td>
<td>66,09</td>
<td>67,34</td>
<td>66,80</td>
<td>69,23</td>
<td>71,39</td>
<td>72,45</td>
<td>80,50</td>
<td>88,89</td>
<td>91,57</td>
</tr>
<tr>
<td></td>
<td>pergaminho</td>
<td>55,76</td>
<td>52,29</td>
<td>58,33</td>
<td>58,16</td>
<td>61,54</td>
<td>67,06</td>
<td>74,28</td>
<td>78,97</td>
<td>76,52</td>
</tr>
<tr>
<td>Rubi</td>
<td>casca integral</td>
<td>42,83</td>
<td>45,54</td>
<td>47,81</td>
<td>49,49</td>
<td>53,72</td>
<td>53,21</td>
<td>63,45</td>
<td>72,33</td>
<td>77,94</td>
</tr>
<tr>
<td></td>
<td>casca melosa</td>
<td>48,11</td>
<td>50,19</td>
<td>54,80</td>
<td>51,78</td>
<td>55,28</td>
<td>62,33</td>
<td>70,74</td>
<td>80,37</td>
<td>84,06</td>
</tr>
<tr>
<td></td>
<td>pergaminho</td>
<td>44,18</td>
<td>49,66</td>
<td>47,20</td>
<td>57,56</td>
<td>49,23</td>
<td>57,63</td>
<td>63,69</td>
<td>65,45</td>
<td>70,11</td>
</tr>
</tbody>
</table>
TABELA 3A: Pontos para as curvas de degradabilidade estimada para a fibra em detergente neutro das diferentes frações da casca de café dos cultivares Catuaí, Mundo Novo e Rubi, em função dos tempos de incubação.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Fração</th>
<th>Tempo de incubação (horas)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,0</td>
<td>1,5</td>
</tr>
<tr>
<td>Catuaí</td>
<td>casca integral</td>
<td>4,32</td>
</tr>
<tr>
<td></td>
<td>casca melosa</td>
<td>5,55</td>
</tr>
<tr>
<td></td>
<td>pergaminho</td>
<td>7,85</td>
</tr>
<tr>
<td>Mundo</td>
<td>casca integral</td>
<td>3,10</td>
</tr>
<tr>
<td></td>
<td>casca melosa</td>
<td>20,25</td>
</tr>
<tr>
<td></td>
<td>pergaminho</td>
<td>11,84</td>
</tr>
<tr>
<td>Novo</td>
<td>casca integral</td>
<td>12,11</td>
</tr>
<tr>
<td></td>
<td>casca melosa</td>
<td>7,29</td>
</tr>
<tr>
<td></td>
<td>pergaminho</td>
<td>8,92</td>
</tr>
</tbody>
</table>

TABELA 4A: Pontos para as curvas de degradabilidade estimada para a fibra em detergente ácido das diferentes frações da casca de café dos cultivares Catuaí, Mundo Novo e Rubi, em função dos tempos de incubação.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Fração</th>
<th>Tempo de incubação (horas)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,0</td>
<td>1,5</td>
</tr>
<tr>
<td>Catuaí</td>
<td>casca integral</td>
<td>11,55</td>
</tr>
<tr>
<td></td>
<td>casca melosa</td>
<td>16,35</td>
</tr>
<tr>
<td></td>
<td>pergaminho</td>
<td>3,94</td>
</tr>
<tr>
<td>Mundo</td>
<td>casca integral</td>
<td>10,50</td>
</tr>
<tr>
<td></td>
<td>casca melosa</td>
<td>14,94</td>
</tr>
<tr>
<td></td>
<td>pergaminho</td>
<td>13,15</td>
</tr>
<tr>
<td>Novo</td>
<td>casca integral</td>
<td>8,76</td>
</tr>
<tr>
<td></td>
<td>casca melosa</td>
<td>11,90</td>
</tr>
<tr>
<td></td>
<td>pergaminho</td>
<td>10,82</td>
</tr>
</tbody>
</table>